peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/tasks
/orqa
/evaluate_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
import torch | |
from megatron import get_args, print_rank_0 | |
from megatron.checkpointing import load_biencoder_checkpoint | |
from megatron.data.orqa_wiki_dataset import get_open_retrieval_wiki_dataset | |
from megatron.data.realm_index import OpenRetreivalDataStore, FaissMIPSIndex | |
from megatron.model.biencoder_model import get_model_provider | |
from megatron.training import get_model | |
from deepspeed.accelerator import get_accelerator | |
from tasks.orqa.unsupervised.nq import get_nq_dataset | |
from tasks.orqa.unsupervised.nq import get_one_epoch_nq_dataloader | |
from tasks.orqa.unsupervised.nq import process_nq_batch | |
from tasks.orqa.unsupervised.qa_utils import calculate_matches | |
class ORQAEvaluator(object): | |
def __init__(self): | |
args = get_args() | |
self.embedding_size = args.hidden_size | |
self.faiss_use_gpu = args.faiss_use_gpu | |
self.evidence_embedder_obj = None | |
self.evidence_dataset = None | |
self.mips_index = None | |
self.eval_dataset = None | |
# Get Evidence (Wikipedia) dataset | |
self.get_evidence_dataset() | |
# Load query encoder checkpoint | |
only_query_model = True | |
if args.biencoder_shared_query_context_model: | |
only_query_model = False | |
model = get_model(get_model_provider(only_query_model=only_query_model, | |
biencoder_shared_query_context_model=args.biencoder_shared_query_context_model)) | |
self.model = load_biencoder_checkpoint(model, | |
only_query_model=only_query_model) | |
assert len(self.model) == 1 | |
self.model[0].eval() | |
# Load faiss indexer | |
self.faiss_wrapper() | |
def get_evidence_embedding(self): | |
# This will load the embedding from the embedding path | |
self.evidence_embedder_obj = OpenRetreivalDataStore(load_from_path=True) | |
def get_evidence_dataset(self): | |
self.evidence_dataset = get_open_retrieval_wiki_dataset() | |
def faiss_wrapper(self): | |
# Initialize FAISS wrapper on local rank = 0 as the evidence embeddings | |
# is distributed over all the GPUs in a node and FAISS is not | |
# thread-safe | |
args = get_args() | |
if args.local_rank == 0: | |
# Get evidence embeddings computed using context encoder | |
self.get_evidence_embedding() | |
assert self.evidence_embedder_obj is not None | |
self.mips_index = FaissMIPSIndex(embed_size=self.embedding_size, | |
embed_data=self.evidence_embedder_obj, | |
use_gpu=self.faiss_use_gpu) | |
# Wait for the FAISS index to be initialized in all the nodes | |
torch.distributed.barrier() | |
def generate_query_vectors(self, qa_data, split): | |
self.eval_dataset = get_nq_dataset(qa_data, split) | |
dataloader = get_one_epoch_nq_dataloader(self.eval_dataset) | |
query_vectors = [] | |
reference_list = [] | |
for batch in dataloader: | |
# batch also has query_tokens and query_pad_data | |
query_tokens, query_mask, query_types, \ | |
query_len, reference = process_nq_batch(batch) | |
assert len(self.model) == 1 | |
unwrapped_model = self.model[0] | |
while not hasattr(unwrapped_model, 'embed_text'): | |
unwrapped_model = unwrapped_model.module | |
with torch.no_grad(): | |
query_logits = unwrapped_model.embed_text( | |
unwrapped_model.query_model, query_tokens, | |
query_mask, query_types) | |
reference_list.extend(reference) | |
query_vectors.extend(query_logits.split(1, dim=0)) | |
if len(query_vectors) % 100 == 0: | |
print_rank_0('Encoded queries {}'.format(len(query_vectors))) | |
query_tensor = torch.cat(query_vectors, dim=0) | |
print_rank_0('Total encoded queries tensor {}'.format(query_tensor.size())) | |
assert query_tensor.size(0) == len(self.eval_dataset) | |
return query_tensor, reference_list | |
def evaluate(self, qa_data, split): | |
args = get_args() | |
query_tensor, reference_list = self.generate_query_vectors(qa_data, \ | |
split) | |
local_rank = args.local_rank | |
rank = torch.distributed.get_rank() | |
device_count = get_accelerator().device_count() | |
num_nodes = torch.distributed.get_world_size() // device_count | |
node_id = rank // device_count | |
for node in range(num_nodes): | |
start_rank = node * device_count | |
end_rank = (node + 1) * device_count | |
ranks_list = list(range(start_rank, end_rank)) | |
node_group = torch.distributed.new_group(ranks=ranks_list) | |
if node_id == node: | |
device_start_rank = start_rank | |
group = node_group | |
input_ = torch.empty_like(query_tensor).copy_(query_tensor).detach_() | |
tensor_list = [torch.empty_like(input_) for _ in range(device_count)] | |
torch.distributed.all_gather(tensor_list, query_tensor, group=group) | |
if local_rank == 0 and self.mips_index is not None: | |
all_query_tensor = torch.cat(tensor_list, dim=0).contiguous() | |
distance, topkindex = self.mips_index.search_mips_index( | |
all_query_tensor, top_k=args.faiss_topk_retrievals, | |
reconstruct=False) | |
distance = torch.from_numpy(distance).to(get_accelerator().device_name()) | |
topkindex = torch.LongTensor(topkindex).to(get_accelerator().device_name()) | |
if local_rank != 0: | |
distance = torch.empty(device_count * len(query_tensor), \ | |
args.faiss_topk_retrievals, dtype=torch.float32).to(get_accelerator().device_name()) | |
topkindex = torch.empty(device_count * len(query_tensor), \ | |
args.faiss_topk_retrievals, dtype=torch.int64).to(get_accelerator().device_name()) | |
torch.distributed.broadcast(distance, src=device_start_rank, \ | |
group=group) | |
torch.distributed.broadcast(topkindex, src=device_start_rank, \ | |
group=group) | |
distance = torch.split(distance, len(query_tensor), dim=0)\ | |
[local_rank] | |
topkindex = torch.split(topkindex, len(query_tensor), dim=0)\ | |
[local_rank] | |
top_ids_and_scores = [] | |
for darray, topkarray in zip(distance, topkindex): | |
top_ids_and_scores.append((topkarray.tolist(), darray.tolist())) | |
passages = self.evidence_dataset.id2text | |
match_stats = calculate_matches(passages, | |
reference_list, | |
top_ids_and_scores, | |
workers_num=args.num_workers, | |
match_type=args.faiss_match) | |
top_k_hits = match_stats.top_k_hits | |
print_rank_0("{} SET RESULTS".format(split)) | |
print_rank_0("topk-{} documents hits {}".format( | |
args.faiss_topk_retrievals, top_k_hits)) | |
top_k_hits = [v / len(top_ids_and_scores) for v in top_k_hits] | |
print_rank_0("top-k documents hits accuracy {}".format(top_k_hits)) | |
for i in args.retriever_report_topk_accuracies: | |
print_rank_0("top-{}: {:.2f}".format(i, top_k_hits[i-1] * 100)) | |
return | |