peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/tasks
/orqa
/supervised
/data.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""ORQA dataset.""" | |
import json | |
import random | |
from abc import ABC | |
from abc import abstractmethod | |
import numpy as np | |
from torch.utils.data import Dataset | |
from megatron import print_rank_0, get_args | |
from megatron.data.biencoder_dataset_utils import make_attention_mask | |
def build_token_types_from_context_list(ctx_list, tokenizer, max_seq_length): | |
ctx_id_list, ctx_types_list = [], [] | |
for context in ctx_list: | |
title_ids = tokenizer.tokenize(context['title']) | |
ctx_ids = tokenizer.tokenize(context['text']) | |
ctx_ids = title_ids + [tokenizer.sep_id] + ctx_ids | |
ctx_ids, ctx_types, _ = build_tokens_types_paddings_from_ids(ctx_ids, | |
max_seq_length, tokenizer.cls, | |
tokenizer.sep, tokenizer.pad) | |
ctx_id_list.append(ctx_ids) | |
ctx_types_list.append(ctx_types) | |
return ctx_id_list, ctx_types_list | |
def build_tokens_types_paddings_from_text(query, context, | |
tokenizer, max_seq_length): | |
"""Build token types and paddings, trim if needed, and pad if needed.""" | |
query_ids = tokenizer.tokenize(query) | |
query_ids, query_types, query_pad_mask = \ | |
build_tokens_types_paddings_from_ids(query_ids, max_seq_length, \ | |
tokenizer.cls, tokenizer.sep, tokenizer.pad) | |
# Appending the title of the context at front | |
extended_ctx_ids = None | |
if context is not None: | |
title_ids = tokenizer.tokenize(context['title']) | |
ctx_ids = tokenizer.tokenize(context['text']) | |
extended_ctx_ids = title_ids + [tokenizer.sep] + ctx_ids | |
ctx_ids, ctx_types, ctx_pad_mask = \ | |
build_tokens_types_paddings_from_ids(extended_ctx_ids, | |
max_seq_length, tokenizer.cls, tokenizer.sep, tokenizer.pad) | |
return query_ids, query_types, query_pad_mask, \ | |
ctx_ids, ctx_types, ctx_pad_mask | |
# Similar code tasks/data_utils with some changes | |
def build_tokens_types_paddings_from_ids(text_ids, max_seq_length, | |
cls_id, sep_id, pad_id): | |
"""Build token types and paddings, trim if needed, and pad if needed.""" | |
enc_ids = [] | |
tokentypes_enc = [] | |
# [CLS]. | |
enc_ids.append(cls_id) | |
tokentypes_enc.append(0) | |
# A. | |
len_src = len(text_ids) | |
enc_ids.extend(text_ids) | |
tokentypes_enc.extend([0] * len_src) | |
# Cap the size. | |
if len(enc_ids) > max_seq_length - 1: | |
enc_ids = enc_ids[0: max_seq_length - 1] | |
tokentypes_enc = tokentypes_enc[0: max_seq_length - 1] | |
# [SEP]. | |
enc_ids.append(sep_id) | |
tokentypes_enc.append(0) | |
num_tokens_enc = len(enc_ids) | |
# Padding. | |
padding_length = max_seq_length - len(enc_ids) | |
if padding_length > 0: | |
enc_ids.extend([pad_id] * padding_length) | |
tokentypes_enc.extend([pad_id] * padding_length) | |
pad_mask = ([1] * num_tokens_enc) + ([0] * padding_length) | |
pad_mask = np.array(pad_mask, dtype=np.int64) | |
return enc_ids, tokentypes_enc, pad_mask | |
def build_sample(query_ids, query_types, query_pad_mask, | |
ctx_ids, ctx_types, ctx_pad_mask, answers, | |
neg_ctx_id_list=None, neg_ctx_types_list=None, | |
include_neg=False): | |
"""Convert to numpy and return a sample consumed by the batch producer.""" | |
query_ids = np.array(query_ids, dtype=np.int64) | |
query_types = np.array(query_types, dtype=np.int64) | |
query_mask = make_attention_mask(query_ids, query_ids) | |
ctx_ids = np.array(ctx_ids, dtype=np.int64) | |
ctx_types = np.array(ctx_types, dtype=np.int64) | |
ctx_mask = make_attention_mask(ctx_ids, ctx_ids) | |
sample = ({ | |
'query': query_ids, | |
'query_mask': query_mask, | |
'query_types': query_types, | |
'query_pad_mask': query_pad_mask, | |
'context': ctx_ids, | |
'context_mask': ctx_mask, | |
'context_types': ctx_types, | |
'context_pad_mask': ctx_pad_mask, | |
'reference': answers | |
}) | |
if include_neg: | |
neg_ctx_ids = np.array(neg_ctx_id_list, dtype=np.int64) | |
neg_ctx_id_types = np.array(neg_ctx_types_list, dtype=np.int64) | |
neg_ctx_mask = np.array([make_attention_mask(ids, ids) \ | |
for ids in neg_ctx_ids], dtype=np.int64) | |
sample['neg_context'] = neg_ctx_ids | |
sample['neg_context_types'] = neg_ctx_id_types | |
sample['neg_context_mask'] = neg_ctx_mask | |
return sample | |
class OpenRetrievalAbstractDataset(ABC, Dataset): | |
"""Open Retrieval base dataset class.""" | |
def __init__(self, task_name, dataset_name, datapaths, tokenizer, \ | |
max_seq_length, evaluate=False): | |
# Store inputs. | |
args = get_args() | |
self.evaluate = evaluate | |
self.val_av_rank_hard_neg = args.val_av_rank_hard_neg | |
self.val_av_rank_other_neg = args.val_av_rank_other_neg | |
self.train_with_neg = args.train_with_neg | |
self.train_hard_neg = args.train_hard_neg | |
self.task_name = task_name | |
self.dataset_name = dataset_name | |
self.tokenizer = tokenizer | |
self.max_seq_length = max_seq_length | |
print_rank_0(' > building {} dataset for {}:'.format(self.task_name, | |
self.dataset_name)) | |
# Process the files. | |
string = ' > paths:' | |
for path in datapaths: | |
string += ' ' + path | |
print_rank_0(string) | |
self.samples = [] | |
for datapath in datapaths: | |
self.samples.extend(self.process_samples_from_single_path(datapath)) | |
args = get_args() | |
if args.sample_rate < 1: # subsample | |
k = int(len(self.samples) * args.sample_rate) | |
self.samples = random.sample(self.samples, k) | |
print_rank_0(' >> total number of samples: {}'.format( | |
len(self.samples))) | |
def __len__(self): | |
return len(self.samples) | |
def __getitem__(self, idx): | |
raw_sample = self.samples[idx] | |
query_ids, query_types, query_pad_mask, ctx_ids, ctx_types, \ | |
ctx_pad_mask = build_tokens_types_paddings_from_text( \ | |
raw_sample['question'], raw_sample['pos_context'], \ | |
self.tokenizer, self.max_seq_length) | |
if self.evaluate: | |
neg_ctx_list = \ | |
raw_sample['negative_context'][:self.val_av_rank_other_neg] + \ | |
raw_sample['hard_negative_context'][:self.val_av_rank_hard_neg] | |
neg_ctx_id_list, neg_ctx_types_list = \ | |
build_token_types_from_context_list(neg_ctx_list, \ | |
self.tokenizer, self.max_seq_length) | |
elif self.train_with_neg: | |
hard_negative_ctx = raw_sample['hard_negative_context'] | |
negative_ctx = raw_sample['negative_context'] | |
if True: # TODO: fix this or remove this condition | |
random.shuffle(hard_negative_ctx) | |
random.shuffle(negative_ctx) | |
neg_ctx_list = hard_negative_ctx[:self.train_hard_neg] | |
# In the Google NQ dataset by DPR paper, there are around more than | |
# 50 missing hard negatives in training data. | |
# In those cases, substitute hard negatives by simple negatives. | |
if len(neg_ctx_list) < self.train_hard_neg: | |
neg_ctx_list += negative_ctx[:self.train_hard_neg - \ | |
len(neg_ctx_list)] | |
neg_ctx_id_list, neg_ctx_types_list = \ | |
build_token_types_from_context_list(neg_ctx_list, | |
self.tokenizer, self.max_seq_length) | |
else: | |
neg_ctx_id_list = None | |
neg_ctx_types_list = None | |
sample = build_sample(query_ids, query_types, query_pad_mask, | |
ctx_ids, ctx_types, ctx_pad_mask, | |
raw_sample['answers'], | |
neg_ctx_id_list, neg_ctx_types_list, | |
include_neg=self.evaluate or self.train_with_neg) | |
return sample | |
def process_samples_from_single_path(filename): | |
"""Abstract method that takes a filename and | |
returns a list of dataset samples, each sample being a dict of | |
{'text': string, 'text': string} | |
""" | |
pass | |
def normalize_question(question): | |
if question[-1] == '?': | |
question = question[:-1] | |
return question | |
# The following class reads the datasets for training retriever as | |
# prepared by the DPR codebase (https://github.com/facebookresearch/DPR) | |
class NQSupervisedDataset(OpenRetrievalAbstractDataset): | |
def __init__(self, name, datapaths, tokenizer, max_seq_length, \ | |
evaluate=False): | |
super().__init__('natural_questions_ret', | |
name, | |
datapaths, | |
tokenizer, | |
max_seq_length, | |
evaluate=evaluate) | |
def process_samples_from_single_path(filename): | |
""""Implement abstract method.""" | |
print_rank_0(' > Processing {} ...'.format(filename)) | |
samples = [] | |
total = 0 | |
with open(filename, 'r', encoding="utf-8") as f: | |
data = json.load(f) | |
for row in data: | |
question = normalize_question(row['question']) | |
pos_context = row['positive_ctxs'][0] | |
# Hard Negative Contexts | |
if len(row['hard_negative_ctxs']) > 0: | |
hard_neg_context = row['hard_negative_ctxs'] | |
else: | |
hard_neg_context = [] | |
# Negative Contexts | |
if len(row['negative_ctxs']) > 0: | |
neg_context = row['negative_ctxs'] | |
else: | |
neg_context = [] | |
answers = row['answers'] | |
sample = {'question': question, | |
'pos_context': pos_context, | |
'hard_negative_context': hard_neg_context, | |
'negative_context': neg_context, | |
'answers': answers} | |
total += 1 | |
samples.append(sample) | |
if total % 5000 == 0: | |
print_rank_0(' > processed {} so far ...'.format(total)) | |
print_rank_0(' >> processed {} samples.'.format(len(samples))) | |
return samples | |