peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/tasks
/orqa
/supervised
/finetune.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""ORQA finetuning/evaluation.""" | |
from functools import partial | |
import sys | |
import math | |
import torch | |
import torch.nn.functional as F | |
from megatron import get_args, get_timers, get_tokenizer, print_rank_0 | |
from megatron.core import mpu | |
from megatron.indexer import IndexBuilder | |
from megatron.model.biencoder_model import biencoder_model_provider | |
from megatron.utils import average_losses_across_data_parallel_group | |
from pretrain_ict import get_group_world_size_rank | |
from tasks.finetune_utils import finetune | |
from tasks.orqa.supervised.eval_utils import accuracy_func_provider | |
from tasks.orqa.supervised.eval_utils import process_batch, task_collate_fn | |
from tasks.orqa.evaluate_utils import ORQAEvaluator | |
# input_ is a 2D tensor | |
def check_and_append_tensor_for_gather(group, rank, world_size, input_): | |
# gather the size of the first dimension of the tensor from all ranks | |
current_length = input_.size()[0] | |
first_dim = torch.tensor([[current_length]], | |
device=torch.cuda.current_device()) | |
input_list = [torch.empty_like(first_dim) for _ in range(world_size)] | |
input_list[rank].copy_(first_dim) | |
torch.distributed.all_gather(input_list, first_dim, group=group) | |
all_input_list = torch.cat(input_list, dim=0).contiguous() | |
max_length = torch.max(all_input_list) | |
# if the size are different than the max, extend the tensor | |
# accordingly | |
if max_length > current_length: | |
padding=tuple([0] * (input_.dim() * 2 - 1)) + \ | |
tuple([max_length - current_length]) | |
input_ = F.pad(input=input_, pad=padding) | |
return input_ | |
def orqa(Dataset): | |
def cross_entropy_forward_step(batch, model): | |
"""Simple forward step with cross-entropy loss.""" | |
timers = get_timers() | |
tokenizer = get_tokenizer() | |
# Get the batch. | |
timers('batch generator', log_level=2).start() | |
try: | |
batch_ = next(batch) | |
except BaseException: | |
batch_ = batch | |
group, rank, world_size = get_group_world_size_rank() | |
query_tokens, query_mask, query_types, query_pad_mask, \ | |
context_tokens, context_mask, context_types, context_pad_mask, \ | |
neg_context_tokens, neg_context_mask, neg_context_types, \ | |
reference = process_batch(batch_) | |
timers('batch generator').stop() | |
local_batch_size = query_tokens.shape[0] | |
# Text representation of query and context | |
query_list, context_list = [], [] | |
for i in range(local_batch_size): | |
query_list.append(tokenizer.decode(query_tokens[i].tolist())) | |
context_list.append(tokenizer.decode(context_tokens[i].tolist())) | |
if neg_context_tokens is not None: | |
neg_context_tokens = check_and_append_tensor_for_gather(group, | |
rank, world_size, neg_context_tokens) | |
neg_context_mask = check_and_append_tensor_for_gather(group, | |
rank, world_size, neg_context_mask) | |
neg_context_types = check_and_append_tensor_for_gather(group, | |
rank, world_size, neg_context_types) | |
if neg_context_tokens is not None: | |
context_tokens = torch.cat([context_tokens, neg_context_tokens]) | |
context_mask = torch.cat([context_mask, neg_context_mask]) | |
context_types = torch.cat([context_types, neg_context_types]) | |
# Forward model. | |
output_tensor = model(query_tokens, query_mask, | |
query_types, context_tokens, | |
context_mask, context_types) | |
return output_tensor, partial(cross_entropy_loss_func, query_tokens, context_tokens) | |
def cross_entropy_loss_func(query_tokens, context_tokens, output_tensor): | |
args = get_args() | |
local_batch_size = query_tokens.shape[0] | |
group, rank, world_size = get_group_world_size_rank() | |
# recall we assert that model_parallel_size == 1 | |
global_batch_size = world_size * local_batch_size | |
query_logits, context_logits = output_tensor | |
if world_size > 1: | |
input_ = torch.empty_like(context_logits).copy_(\ | |
context_logits).detach_() | |
tensor_list = [torch.empty_like(input_) for _ in range(world_size)] | |
tensor_list[rank].copy_(input_) | |
torch.distributed.all_gather(tensor_list, input_, group=group) | |
# Check if all-gather happens in order | |
assert tensor_list[rank].sum().item() == \ | |
context_logits.sum().item() | |
# Preserves the gradient | |
tensor_list[rank] = context_logits | |
all_context_logits = torch.cat(tensor_list, dim=0).contiguous() | |
# Query tensors | |
input_ = torch.empty_like(query_logits).copy_(\ | |
query_logits).detach_() | |
tensor_list = [torch.empty_like(input_) for _ in range(world_size)] | |
tensor_list[rank].copy_(input_) | |
torch.distributed.all_gather(tensor_list, input_, group=group) | |
# Check if all-gather happens in order | |
assert tensor_list[rank].sum().item() == query_logits.sum().item() | |
# Preserves the gradient | |
tensor_list[rank] = query_logits | |
all_query_logits = torch.cat(tensor_list, dim=0).contiguous() | |
else: | |
all_query_logits = query_logits | |
all_context_logits = context_logits | |
retrieval_scores = torch.matmul(all_query_logits, | |
torch.transpose(all_context_logits, 0, 1)) | |
# Scaling the retrieval scores | |
if args.retriever_score_scaling: | |
retrieval_scores = retrieval_scores / math.sqrt(args.hidden_size) | |
if args.train_with_neg: | |
# if the world size is 3, local batch size is 4, and | |
# local context size is 8, what we want is | |
# labels = [0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19] | |
labels = [] | |
local_context_size = context_tokens.shape[0] | |
for i in range(world_size): | |
j = i * local_context_size | |
labels.extend(list(range(j, j + local_batch_size))) | |
labels = torch.LongTensor(labels).cuda() | |
assert len(labels) == global_batch_size | |
else: | |
labels = torch.arange(global_batch_size).long().cuda() | |
# Cross-entropy loss. | |
softmax_scores = F.log_softmax(retrieval_scores, dim=1) | |
loss = F.nll_loss(softmax_scores, labels, reduction='mean') | |
max_score, max_idxs = torch.max(softmax_scores, 1) | |
correct_predictions_count = (max_idxs == labels).sum().float() | |
# Reduce loss for logging. | |
reduced_loss = average_losses_across_data_parallel_group([loss, \ | |
correct_predictions_count]) | |
# Loss scaling for correct losses in Supervised Retrieval | |
loss = loss * mpu.get_data_parallel_world_size() | |
return loss, {'lm loss': reduced_loss[0], | |
'correct_prediction_count': reduced_loss[1]} | |
def train_valid_datasets_provider(): | |
"""Build train and validation dataset.""" | |
args = get_args() | |
tokenizer = get_tokenizer() | |
train_dataset = Dataset('training', | |
args.train_data, | |
tokenizer, | |
args.retriever_seq_length, | |
evaluate=False) | |
valid_dataset = Dataset('validation', | |
args.valid_data, | |
tokenizer, | |
args.retriever_seq_length, | |
evaluate=True) | |
return train_dataset, valid_dataset | |
def model_provider(pre_process=True, post_process=True): | |
"""Build the model.""" | |
args = get_args() | |
print_rank_0('building retriever model for {} ...'.format(args.task)) | |
model = biencoder_model_provider(only_context_model=False, | |
only_query_model=False, | |
biencoder_shared_query_context_model=\ | |
args.biencoder_shared_query_context_model, | |
pre_process=pre_process, post_process=post_process) | |
return model | |
def single_dataset_provider(datapath): | |
args = get_args() | |
tokenizer = get_tokenizer() | |
name = datapath[0].split('/')[-1].split('.')[0] | |
return Dataset(name, | |
datapath, | |
tokenizer, | |
args.retriever_seq_length, | |
evaluate=True) | |
def metrics_func_provider(): | |
"""Provide metrics callback function.""" | |
return accuracy_func_provider(single_dataset_provider) | |
"""Finetune/evaluate.""" | |
finetune(train_valid_datasets_provider, | |
model_provider, | |
forward_step=cross_entropy_forward_step, | |
end_of_epoch_callback_provider=metrics_func_provider, | |
task_collate_fn=task_collate_fn) | |
def main(): | |
args = get_args() | |
if args.task == 'RET-FINETUNE-NQ': | |
from tasks.orqa.supervised.data import NQSupervisedDataset as Dataset | |
else: | |
raise NotImplementedError('ORQA task {} is not implemented.'.format( | |
args.task)) | |
orqa(Dataset) | |