peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/tasks
/orqa
/unsupervised
/qa_utils.py
#!/usr/bin/env python3 | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
# All rights reserved. | |
# | |
# The following code has been taken from | |
# https://github.com/facebookresearch/DPR, which is CC-BY-NC 4.0 | |
# licensed as of now. More details on the license can be found | |
# at https://github.com/facebookresearch/DPR/blob/master/LICENSE | |
""" | |
Set of utilities for Q&A results validation tasks - Retriver passage | |
validation and Reader predicted answer validation | |
""" | |
import collections | |
import logging | |
import string | |
import unicodedata | |
from functools import partial | |
from multiprocessing import Pool as ProcessPool | |
from typing import Tuple, List, Dict | |
import regex as re | |
from tasks.orqa.unsupervised.tokenizers import SimpleTokenizer | |
logger = logging.getLogger(__name__) | |
QAMatchStats = collections.namedtuple('QAMatchStats', ['top_k_hits',\ | |
'questions_doc_hits']) | |
def calculate_matches(all_docs: Dict[object, Tuple[str, str]], | |
answers: List[List[str]], closest_docs: List[Tuple[List[object], | |
List[float]]], workers_num: int, match_type: str) -> QAMatchStats: | |
""" | |
Evaluates answers presence in the set of documents. This function is | |
supposed to be used with a large collection of documents and results. | |
It internally forks multiple sub-processes for evaluation and then | |
merges results | |
:param all_docs: dictionary of the entire documents database. | |
doc_id -> (doc_text, title) | |
:param answers: list of answers's list. One list per question | |
:param closest_docs: document ids of the top results along with their | |
scores | |
:param workers_num: amount of parallel threads to process data | |
:param match_type: type of answer matching. Refer to has_answer code for | |
available options | |
:return: matching information tuple. | |
top_k_hits - a list where the index is the amount of top documents retrieved | |
and the value is the total amount of valid matches across an entire | |
dataset. | |
questions_doc_hits - more detailed info with answer matches for every | |
question and every retrieved document | |
""" | |
global dpr_all_documents | |
dpr_all_documents = all_docs | |
tok_opts = {} | |
tokenizer = SimpleTokenizer(**tok_opts) | |
processes = ProcessPool( | |
processes=workers_num, | |
) | |
logger.info('Matching answers in top docs...') | |
get_score_partial = partial(check_answer, match_type=match_type, | |
tokenizer=tokenizer) | |
questions_answers_docs = zip(answers, closest_docs) | |
scores = processes.map(get_score_partial, questions_answers_docs) | |
logger.info('Per question validation results len=%d', len(scores)) | |
n_docs = len(closest_docs[0][0]) | |
top_k_hits = [0] * n_docs | |
for question_hits in scores: | |
best_hit = next((i for i, x in enumerate(question_hits) if x), None) | |
if best_hit is not None: | |
top_k_hits[best_hit:] = [v + 1 for v in top_k_hits[best_hit:]] | |
return QAMatchStats(top_k_hits, scores) | |
def check_answer(questions_answers_docs, tokenizer, match_type) -> List[bool]: | |
""" | |
Search through all the top docs to see if they have any of the answers. | |
""" | |
answers, (doc_ids, doc_scores) = questions_answers_docs | |
global dpr_all_documents | |
hits = [] | |
for i, doc_id in enumerate(doc_ids): | |
doc = dpr_all_documents[doc_id] | |
text = doc[0] | |
answer_found = False | |
if text is None: # cannot find the document for some reason | |
logger.warning("no doc in db") | |
hits.append(False) | |
continue | |
if has_answer(answers, text, tokenizer, match_type): | |
answer_found = True | |
hits.append(answer_found) | |
return hits | |
def has_answer(answers, text, tokenizer, match_type) -> bool: | |
""" | |
Check if a document contains an answer string. | |
If `match_type` is string, token matching is done between the text | |
and answer. | |
If `match_type` is regex, we search the whole text with the regex. | |
""" | |
text = _normalize(text) | |
if match_type == 'string': | |
# Answer is a list of possible strings | |
text = tokenizer.tokenize(text).words(uncased=True) | |
for single_answer in answers: | |
single_answer = _normalize(single_answer) | |
single_answer = tokenizer.tokenize(single_answer) | |
single_answer = single_answer.words(uncased=True) | |
for i in range(0, len(text) - len(single_answer) + 1): | |
if single_answer == text[i: i + len(single_answer)]: | |
return True | |
elif match_type == 'regex': | |
# Answer is a regex | |
for single_answer in answers: | |
single_answer = _normalize(single_answer) | |
if regex_match(text, single_answer): | |
return True | |
return False | |
def regex_match(text, pattern): | |
"""Test if a regex pattern is contained within a text.""" | |
try: | |
pattern = re.compile( | |
pattern, | |
flags=re.IGNORECASE + re.UNICODE + re.MULTILINE, | |
) | |
except BaseException: | |
return False | |
return pattern.search(text) is not None | |
# function for the reader model answer validation | |
def exact_match_score(prediction, ground_truth): | |
return _normalize_answer(prediction) == _normalize_answer(ground_truth) | |
def _normalize_answer(s): | |
def remove_articles(text): | |
return re.sub(r'\b(a|an|the)\b', ' ', text) | |
def white_space_fix(text): | |
return ' '.join(text.split()) | |
def remove_punc(text): | |
exclude = set(string.punctuation) | |
return ''.join(ch for ch in text if ch not in exclude) | |
def lower(text): | |
return text.lower() | |
return white_space_fix(remove_articles(remove_punc(lower(s)))) | |
def _normalize(text): | |
return unicodedata.normalize('NFD', text) | |