peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/tasks
/vision
/classification
/eval_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""Evaluation utilities.""" | |
import os | |
from functools import partial | |
import torch | |
from megatron import get_args | |
from megatron import print_rank_0, print_rank_last | |
from megatron.core import mpu | |
from megatron.schedules import get_forward_backward_func | |
from tasks.vision.finetune_utils import build_data_loader | |
from tasks.vision.finetune_utils import process_batch | |
from torchvision import datasets, transforms | |
def accuracy_func_provider(): | |
"""Provide function that calculates accuracies.""" | |
args = get_args() | |
data_path = args.data_path | |
crop_size = (args.img_h, args.img_w) | |
# Build dataloaders. | |
val_data_path = data_path[1] | |
normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
transform_val = transforms.Compose( | |
[ | |
transforms.Resize(crop_size), | |
transforms.CenterCrop(crop_size), | |
transforms.ToTensor(), | |
normalize, | |
] | |
) | |
dataset = datasets.ImageFolder(root=val_data_path, transform=transform_val) | |
dataloader = build_data_loader( | |
dataset, | |
args.micro_batch_size, | |
num_workers=args.num_workers, | |
drop_last=(mpu.get_data_parallel_world_size() > 1), | |
shuffle=False | |
) | |
def metrics_func(model, epoch): | |
print_rank_0("calculating metrics ...") | |
correct, total = calculate_correct_answers(model, dataloader, epoch) | |
percent = float(correct) * 100.0 / float(total) | |
print_rank_last( | |
" >> |epoch: {}| overall: correct / total = {} / {} = " | |
"{:.4f} %".format(epoch, correct, total, percent) | |
) | |
return metrics_func | |
def calculate_correct_answers(model, dataloader, epoch): | |
"""Calculate correct over total answers""" | |
forward_backward_func = get_forward_backward_func() | |
for m in model: | |
m.eval() | |
def loss_func(labels, output_tensor): | |
logits = output_tensor | |
loss_dict = {} | |
# Compute the correct answers. | |
predicted = torch.argmax(logits, dim=-1) | |
corrects = (predicted == labels).float() | |
# Add to the counters. | |
loss_dict['total'] = labels.size(0) | |
loss_dict['correct'] = corrects.sum().item() | |
return 0, loss_dict | |
#defined inside to capture output_predictions | |
def correct_answers_forward_step(batch, model): | |
try: | |
batch_ = next(batch) | |
except BaseException: | |
batch_ = batch | |
images, labels = process_batch(batch_) | |
# Forward model. | |
output_tensor = model(images) | |
return output_tensor, partial(loss_func, labels) | |
with torch.no_grad(): | |
# For all the batches in the dataset. | |
total = 0 | |
correct = 0 | |
for _, batch in enumerate(dataloader): | |
loss_dicts = forward_backward_func(correct_answers_forward_step, batch, model, | |
optimizer=None, timers=None, forward_only=True) | |
for loss_dict in loss_dicts: | |
total += loss_dict['total'] | |
correct += loss_dict['correct'] | |
for m in model: | |
m.train() | |
# Reduce. | |
if mpu.is_pipeline_last_stage(): | |
unreduced = torch.cuda.LongTensor([correct, total]) | |
torch.distributed.all_reduce(unreduced, | |
group=mpu.get_data_parallel_group()) | |
# Print on screen. | |
correct_ans = unreduced[0].item() | |
total_count = unreduced[1].item() | |
return correct_ans, total_count | |