peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/tasks
/vision
/segmentation
/finetune_segformer.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""Vision-classification finetuning/evaluation.""" | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from functools import partial | |
from megatron import get_args, get_timers | |
from megatron import print_rank_0, print_rank_last | |
from megatron.core import mpu | |
from tasks.vision.finetune_utils import finetune | |
from tasks.vision.finetune_utils import build_data_loader | |
from megatron.utils import average_losses_across_data_parallel_group | |
from megatron.schedules import get_forward_backward_func | |
from tasks.vision.segmentation.data import build_train_valid_datasets | |
from tasks.vision.segmentation.seg_models import SegformerSegmentationModel | |
from megatron.model.vision.utils import resize | |
def calculate_iou(hist_data): | |
acc = np.diag(hist_data).sum() / hist_data.sum() | |
acc_cls = np.diag(hist_data) / hist_data.sum(axis=1) | |
acc_cls = np.nanmean(acc_cls) | |
divisor = hist_data.sum(axis=1) + hist_data.sum(axis=0) - \ | |
np.diag(hist_data) | |
iu = np.diag(hist_data) / divisor | |
return iu, acc, acc_cls | |
def fast_hist(pred, gtruth, num_classes): | |
# mask indicates pixels we care about | |
mask = (gtruth >= 0) & (gtruth < num_classes) | |
# stretch ground truth labels by num_classes | |
# class 0 -> 0 | |
# class 1 -> 19 | |
# class 18 -> 342 | |
# | |
# TP at 0 + 0, 1 + 1, 2 + 2 ... | |
# | |
# TP exist where value == num_classes*class_id + class_id | |
# FP = row[class].sum() - TP | |
# FN = col[class].sum() - TP | |
hist = np.bincount(num_classes * gtruth[mask].astype(int) + pred[mask], | |
minlength=num_classes ** 2) | |
hist = hist.reshape(num_classes, num_classes) | |
return hist | |
def segmentation(): | |
def train_valid_datasets_provider(): | |
"""Build train and validation dataset.""" | |
args = get_args() | |
train_ds, valid_ds = build_train_valid_datasets( | |
data_path=args.data_path, | |
image_size=(args.img_h, args.img_w) | |
) | |
return train_ds, valid_ds | |
def model_provider(pre_process=True, post_process=True): | |
"""Build the model.""" | |
args = get_args() | |
model = SegformerSegmentationModel(num_classes=args.num_classes, | |
pre_process=pre_process, | |
post_process=post_process) | |
print_rank_0("model = {}".format(model)) | |
return model | |
def process_batch(batch): | |
"""Process batch and produce inputs for the model.""" | |
images = batch[0].cuda().contiguous() | |
masks = batch[1].cuda().contiguous() | |
return images, masks | |
def calculate_weight(masks, num_classes): | |
bins = torch.histc(masks, bins=num_classes, min=0.0, max=num_classes) | |
hist_norm = bins.float()/bins.sum() | |
hist = ((bins != 0).float() * (1. - hist_norm)) + 1.0 | |
return hist | |
def cross_entropy_loss_func(images, masks, output_tensor, | |
non_loss_data=False): | |
args = get_args() | |
ignore_index = args.ignore_index | |
color_table = args.color_table | |
logits = output_tensor.contiguous().float() | |
logits = resize(logits, size=masks.shape[1:], | |
mode='bilinear', align_corners=False) | |
# Cross-entropy loss. | |
# weight = calculate_weight(masks, num_classes) | |
loss = F.cross_entropy(logits, masks, ignore_index=ignore_index) | |
if not non_loss_data: | |
# Reduce loss for logging. | |
averaged_loss = average_losses_across_data_parallel_group([loss]) | |
return loss, {'lm loss': averaged_loss[0]} | |
else: | |
seg_mask = logits.argmax(dim=1) | |
output_mask = F.embedding(seg_mask, color_table).permute(0, 3, 1, 2) | |
gt_mask = F.embedding(masks, color_table).permute(0, 3, 1, 2) | |
return torch.cat((images, output_mask, gt_mask), dim=2), loss | |
def _cross_entropy_forward_step(batch, model): | |
"""Simple forward step with cross-entropy loss.""" | |
timers = get_timers() | |
# Get the batch. | |
timers("batch generator", log_level=2).start() | |
import types | |
if isinstance(batch, types.GeneratorType): | |
batch_ = next(batch) | |
else: | |
batch_ = batch | |
images, masks = process_batch(batch_) | |
timers("batch generator").stop() | |
# Forward model. | |
output_tensor = model(images) | |
return output_tensor, partial(cross_entropy_loss_func, images, masks) | |
def calculate_correct_answers(model, dataloader, epoch): | |
"""Calculate correct over total answers""" | |
forward_backward_func = get_forward_backward_func() | |
for m in model: | |
m.eval() | |
def loss_func(labels, output_tensor): | |
args = get_args() | |
logits = output_tensor | |
logits = resize(logits, size=labels.shape[1:], | |
mode='bilinear', align_corners=False) | |
loss_dict = {} | |
# Compute the correct answers. | |
probs = logits.contiguous().float().softmax(dim=1) | |
max_probs, preds = torch.max(probs, 1) | |
preds = preds.cpu().numpy() | |
performs = fast_hist(preds.flatten(), | |
labels.cpu().numpy().flatten(), | |
args.ignore_index) | |
loss_dict['performs'] = performs | |
return 0, loss_dict | |
# defined inside to capture output_predictions | |
def correct_answers_forward_step(batch, model): | |
try: | |
batch_ = next(batch) | |
except BaseException: | |
batch_ = batch | |
images, labels = process_batch(batch_) | |
# Forward model. | |
output_tensor = model(images) | |
return output_tensor, partial(loss_func, labels) | |
with torch.no_grad(): | |
# For all the batches in the dataset. | |
performs = None | |
for _, batch in enumerate(dataloader): | |
loss_dicts = forward_backward_func(correct_answers_forward_step, | |
batch, model, | |
optimizer=None, | |
timers=None, | |
forward_only=True) | |
for loss_dict in loss_dicts: | |
if performs is None: | |
performs = loss_dict['performs'] | |
else: | |
performs += loss_dict['performs'] | |
for m in model: | |
m.train() | |
# Reduce. | |
if mpu.is_pipeline_last_stage(): | |
performs_tensor = torch.cuda.FloatTensor(performs) | |
torch.distributed.all_reduce(performs_tensor, | |
group=mpu.get_data_parallel_group()) | |
hist = performs_tensor.cpu().numpy() | |
iu, acc, acc_cls = calculate_iou(hist) | |
miou = np.nanmean(iu) | |
return iu, miou | |
def accuracy_func_provider(): | |
"""Provide function that calculates accuracies.""" | |
args = get_args() | |
train_ds, valid_ds = build_train_valid_datasets( | |
data_path=args.data_path, | |
image_size=(args.img_h, args.img_w) | |
) | |
dataloader = build_data_loader( | |
valid_ds, | |
args.micro_batch_size, | |
num_workers=args.num_workers, | |
drop_last=(mpu.get_data_parallel_world_size() > 1), | |
shuffle=False | |
) | |
def metrics_func(model, epoch): | |
print_rank_0("calculating metrics ...") | |
iou, miou = calculate_correct_answers(model, dataloader, epoch) | |
print_rank_last( | |
" >> |epoch: {}| overall: iou = {}," | |
"miou = {:.4f} %".format(epoch, iou, miou*100.0) | |
) | |
return metrics_func | |
def dump_output_data(data, iteration, writer): | |
for (output_tb, loss) in data: | |
# output_tb[output_tb < 0] = 0 | |
# output_tb[output_tb > 1] = 1 | |
writer.add_images("image-outputseg-realseg", output_tb, | |
global_step=None, walltime=None, | |
dataformats='NCHW') | |
"""Finetune/evaluate.""" | |
finetune( | |
train_valid_datasets_provider, | |
model_provider, | |
forward_step=_cross_entropy_forward_step, | |
process_non_loss_data_func=dump_output_data, | |
end_of_epoch_callback_provider=accuracy_func_provider, | |
) | |
def main(): | |
segmentation() | |