peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/tasks
/vision
/segmentation
/seg_heads.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
import math | |
import einops | |
import torch | |
import apex | |
import torch.nn.functional as F | |
from megatron import get_args | |
from megatron.model import LayerNorm | |
from megatron.model.module import MegatronModule | |
from megatron.model.vision.utils import resize | |
class SetrSegmentationHead(MegatronModule): | |
def __init__(self, hidden_size, num_classes): | |
super(SetrSegmentationHead, self).__init__() | |
args = get_args() | |
self.hidden_size = hidden_size | |
self.num_classes = num_classes | |
self.img_h = args.img_h | |
self.img_w = args.img_w | |
self.patch_dim = args.patch_dim | |
self.layernorm = LayerNorm(hidden_size, eps=args.layernorm_epsilon) | |
self.conv_0 = torch.nn.Conv2d(hidden_size, hidden_size, | |
1, 1, bias=False) | |
self.norm_0 = apex.parallel.SyncBatchNorm(hidden_size) | |
self.conv_1 = torch.nn.Conv2d(hidden_size, num_classes, 1, 1) | |
def to_2D(self, x): | |
n, hw, c = x.shape | |
h = self.img_h // self.patch_dim | |
w = self.img_w // self.patch_dim | |
assert(hw == h * w) | |
x = x.transpose(1, 2).reshape(n, c, h, w) | |
return x | |
def forward(self, hidden_states): | |
# [b c h w] | |
hidden_states = self.layernorm(hidden_states) | |
hidden_states = self.to_2D(hidden_states) | |
hidden_states = self.conv_0(hidden_states) | |
hidden_states = self.norm_0(hidden_states) | |
hidden_states = torch.tanh(hidden_states) | |
hidden_states = self.conv_1(hidden_states) | |
# [b c h w] | |
result = F.interpolate(hidden_states, | |
size=(self.img_h, self.img_w), | |
mode='bilinear') | |
return result | |
class MLP(torch.nn.Module): | |
""" | |
Linear Embedding | |
""" | |
def __init__(self, input_dim=2048, embed_dim=768): | |
super().__init__() | |
self.proj = torch.nn.Linear(input_dim, embed_dim) | |
def forward(self, x): | |
x = x.flatten(2).transpose(1, 2) | |
x = self.proj(x) | |
return x | |
class SegformerSegmentationHead(MegatronModule): | |
def __init__(self, feature_strides, in_channels, | |
embedding_dim, dropout_ratio): | |
super(SegformerSegmentationHead, self).__init__() | |
assert len(feature_strides) == len(in_channels) | |
assert min(feature_strides) == feature_strides[0] | |
args = get_args() | |
self.feature_strides = feature_strides | |
self.in_channels = in_channels | |
self.embedding_dim = embedding_dim | |
self.num_classes = args.num_classes | |
self.dropout_ratio = dropout_ratio | |
c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = \ | |
self.in_channels | |
self.linear_c4 = MLP(input_dim=c4_in_channels, | |
embed_dim=self.embedding_dim) | |
self.linear_c3 = MLP(input_dim=c3_in_channels, | |
embed_dim=self.embedding_dim) | |
self.linear_c2 = MLP(input_dim=c2_in_channels, | |
embed_dim=self.embedding_dim) | |
self.linear_c1 = MLP(input_dim=c1_in_channels, | |
embed_dim=self.embedding_dim) | |
self.conv_fuse = torch.nn.Conv2d(self.embedding_dim*4, | |
self.embedding_dim, 1, 1) | |
self.norm = apex.parallel.SyncBatchNorm(self.embedding_dim) | |
self.dropout = torch.nn.Dropout2d(self.dropout_ratio) | |
self.linear_pred = torch.nn.Conv2d(self.embedding_dim, | |
self.num_classes, | |
kernel_size=1) | |
def forward(self, inputs): | |
c1, c2, c3, c4 = inputs | |
############## MLP decoder on C1-C4 ########### | |
n, _, h, w = c4.shape | |
_c4 = self.linear_c4(c4).permute(0, 2, 1).reshape(n, -1, c4.shape[2], c4.shape[3]) | |
_c4 = resize(_c4, size=c1.size()[2:], mode='bilinear', align_corners=False) | |
_c3 = self.linear_c3(c3).permute(0, 2, 1).reshape(n, -1, c3.shape[2], c3.shape[3]) | |
_c3 = resize(_c3, size=c1.size()[2:], mode='bilinear', align_corners=False) | |
_c2 = self.linear_c2(c2).permute(0, 2, 1).reshape(n, -1, c2.shape[2], c2.shape[3]) | |
_c2 = resize(_c2, size=c1.size()[2:], mode='bilinear', align_corners=False) | |
_c1 = self.linear_c1(c1).permute(0, 2, 1).reshape(n, -1, c1.shape[2], c1.shape[3]) | |
_c = self.conv_fuse(torch.cat([_c4, _c3, _c2, _c1], dim=1)) | |
x = self.norm(_c) | |
x = F.relu(x, inplace=True) | |
x = self.dropout(x) | |
x = self.linear_pred(x) | |
return x | |