peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/tasks
/vision
/segmentation
/utils.py
import math | |
import torch | |
import numpy as np | |
from megatron import get_args | |
def slidingcrops(img, mask): | |
# img: [b c h w] | |
# mask: [b h w] | |
args = get_args() | |
assert args.img_h == args.img_w | |
crop_size = args.img_h | |
stride = args.seg_stride | |
ignore_index = args.ignore_index | |
n, c, h, w = img.shape | |
assert h >= crop_size | |
assert w >= crop_size | |
long_size = max(h, w) | |
img_slices, mask_slices, slices_info = [], [], [] | |
if long_size > crop_size: | |
assert stride <= crop_size | |
h_step_num = int(math.ceil((h - crop_size) / float(stride))) + 1 | |
w_step_num = int(math.ceil((w - crop_size) / float(stride))) + 1 | |
for yy in range(h_step_num): | |
for xx in range(w_step_num): | |
sy, sx = yy * stride, xx * stride | |
ey, ex = sy + crop_size, sx + crop_size | |
img_sub = img[:, :, sy: ey, sx: ex] | |
mask_sub = mask[:, sy: ey, sx: ex] | |
# padding | |
sub_h, sub_w = img_sub.shape[2:] | |
pad_h = max(crop_size - sub_h, 0) | |
pad_w = max(crop_size - sub_w, 0) | |
img_sub = torch.nn.functional.pad(img_sub, pad=(0, pad_w, 0, pad_h), value=ignore_index) | |
mask_sub = torch.nn.functional.pad(mask_sub, pad=(0, pad_w, 0, pad_h)) | |
img_slices.append(img_sub) | |
mask_slices.append(mask_sub) | |
slices_info.append([sy, ey, sx, ex, sub_h, sub_w]) | |
return torch.cat(img_slices), torch.cat(mask_slices), slices_info, (h, w) | |
else: | |
return img, mask, [[0, h, 0, w, h, w]], (h, w) | |
def slidingjoins(preds, probs, labels, slices_info, img_size): | |
args = get_args() | |
num_slices = len(slices_info) | |
if num_slices == 1: | |
return preds, labels | |
h, w = img_size | |
split_size = args.micro_batch_size | |
preds_split = torch.split(preds, split_size) | |
probs_split = torch.split(probs, split_size) | |
labels_split = torch.split(labels, split_size) | |
assert(len(preds_split) == num_slices) | |
total_max_probs = torch.zeros((split_size, h, w), dtype=torch.float, device='cuda') | |
total_preds = torch.zeros((split_size, h, w), dtype=torch.int, device='cuda') | |
total_labels = torch.zeros((split_size, h, w), dtype=torch.int, device='cuda') | |
for i in range(num_slices): | |
sy, ey, sx, ex, sub_h, sub_w = slices_info[i] | |
assert sy + sub_h <= h | |
assert sx + sub_w <= w | |
curr_max_probs = total_max_probs[:, sy:sy + sub_h, sx:sx + sub_w] | |
curr_preds = total_preds[:, sy:sy + sub_h, sx:sx + sub_w] | |
local_max_probs = probs_split[i][:, :sub_h, : sub_w] | |
local_preds = preds_split[i][:, :sub_h, :sub_w] | |
result_max_probs = torch.maximum(curr_max_probs, local_max_probs) | |
result_preds = torch.where(curr_max_probs >= local_max_probs, curr_preds, local_preds) | |
total_max_probs[:, sy:sy + sub_h, sx:sx + sub_w] = result_max_probs | |
total_preds[:, sy:sy + sub_h, sx:sx + sub_w] = result_preds | |
total_labels[:, sy:sy + sub_h, sx:sx + sub_w] = labels_split[i][0, :sub_h, :sub_w] | |
return total_preds, total_labels | |