peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/tests
/models
/test_gpt_model.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | |
import pytest | |
import torch | |
from megatron.core.transformer.transformer_config import TransformerConfig | |
from megatron.core.models.gpt.gpt_model import GPTModel | |
def gpt_model(transformer_config): | |
language_model = GPTModel(config=transformer_config, vocab_size=100, max_sequence_length=4) | |
return language_model | |
class TestGPTModel: | |
def test_constructor(self, gpt_model: GPTModel): | |
assert isinstance(gpt_model, GPTModel) | |
assert gpt_model.max_sequence_length == 4 | |
num_weights = sum([p.numel() for p in gpt_model.parameters()]) | |
assert num_weights == 5040 | |
def test_set_input_tensor(self, gpt_model: GPTModel): | |
config: TransformerConfig = gpt_model.config | |
sequence_length = gpt_model.max_sequence_length | |
micro_batch_size = 2 | |
# [sequence length, batch size, hidden size] | |
input_tensor = torch.ones((sequence_length, micro_batch_size, config.hidden_size)) | |
gpt_model.set_input_tensor(input_tensor) | |
assert gpt_model.decoder.input_tensor.shape[0] == sequence_length | |
assert gpt_model.decoder.input_tensor.shape[1] == micro_batch_size | |
assert gpt_model.decoder.input_tensor.shape[2] == config.hidden_size | |
def test_post_process_forward(self, gpt_model: GPTModel): | |
config: TransformerConfig = gpt_model.config | |
sequence_length = gpt_model.max_sequence_length | |
micro_batch_size = 2 | |
gpt_model.cuda() | |
data = list(range(sequence_length)) | |
input_ids = torch.tensor(data, dtype=torch.int64).repeat((micro_batch_size, 1)).cuda() | |
position_ids = torch.tensor(data, dtype=torch.int64).repeat((micro_batch_size, 1)).cuda() | |
attention_mask = torch.ones((1, 1, sequence_length, sequence_length), dtype=bool).cuda() | |
logits = gpt_model.forward(input_ids=input_ids, position_ids=position_ids, attention_mask=attention_mask) | |
assert logits.shape[0] == micro_batch_size | |
assert logits.shape[1] == sequence_length | |
assert logits.shape[2] == gpt_model.vocab_size | |
def test_no_post_process_forward(self, gpt_model: GPTModel): | |
pass | |
def test_no_preprocess_forward(self, gpt_model: GPTModel): | |
pass | |
def test_state_dict_for_save_checkpoint(self, gpt_model: GPTModel): | |
pass | |
def test_load_state_dict(self, gpt_model: GPTModel): | |
pass | |