peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/tests
/unit_tests
/test_utils.py
import pytest | |
import torch | |
import megatron.core.utils as util | |
import numpy as np | |
def test_divide_properly(): | |
assert util.divide(4,2) == 2 | |
def test_divide_improperly(): | |
with pytest.raises(AssertionError): | |
util.divide(4,5) | |
def test_global_memory_buffer(): | |
global_memory_buffer = util.GlobalMemoryBuffer() | |
obtained_tensor = global_memory_buffer.get_tensor((3,2), torch.float32, "test_tensor") | |
expected_tensor = torch.empty((3,2), dtype=torch.float32, device=torch.cuda.current_device()) | |
assert torch.equal(obtained_tensor, expected_tensor) | |
def test_make_viewless_tensor(): | |
inp = torch.rand((3,4)) | |
assert(torch.equal(inp, util.make_viewless_tensor(inp, True, True))) | |
assert(torch.equal(inp, util.make_viewless_tensor(inp, True, False))) | |
def test_safely_set_viewless_tensor_data(): | |
tensor = torch.zeros((3,4)) | |
new_data_tensor = torch.tensor(np.random.rand(3,4)) | |
util.safely_set_viewless_tensor_data(tensor, new_data_tensor) | |
assert(torch.equal(tensor, new_data_tensor)) | |
def test_assert_viewless_tensor(): | |
tensor = torch.rand((3,4)) | |
assert(torch.equal(util.assert_viewless_tensor(tensor), tensor)) | |
input_tensor_list=[tensor,tensor,tensor] | |
output_tensor_list = util.assert_viewless_tensor(input_tensor_list) | |
for inp,out in zip(input_tensor_list, output_tensor_list): | |
assert(torch.equal(inp,out)) | |