peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/tools
/bert_embedding
/dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | |
import numpy as np | |
import torch | |
from megatron import get_args, get_tokenizer | |
from megatron.data.bert_dataset import build_training_sample | |
class BertEmbeddingDataset(torch.utils.data.Dataset): | |
'''Dataset to convert a text dataset to Bert tokens.''' | |
def __init__(self, text_dataset, max_seq_length): | |
super().__init__() | |
args = get_args() | |
# Dataset, tokenizer. | |
self.text_dataset = text_dataset | |
self.bert_tokenizer = get_tokenizer() | |
# Params to store. | |
self.max_seq_length = max_seq_length | |
self.seed = args.seed | |
self.masked_lm_prob = args.mask_prob | |
# Vocab stuff. | |
self.vocab_id_list = list(self.bert_tokenizer.inv_vocab.keys()) | |
self.vocab_id_to_token_dict = self.bert_tokenizer.inv_vocab | |
self.cls_id = self.bert_tokenizer.cls | |
self.sep_id = self.bert_tokenizer.sep | |
self.mask_id = self.bert_tokenizer.mask | |
self.pad_id = self.bert_tokenizer.pad | |
def __len__(self): | |
return len(self.text_dataset) | |
def __getitem__(self, idx): | |
# Text. | |
text_sample = self.text_dataset[idx] | |
text = text_sample["text"] | |
text = text.replace("<|endoftext|>", "") | |
# Bert/Wordpiece tokens (+truncate). | |
bert_token_ids = self.bert_tokenizer.tokenize(text) | |
bert_token_ids = bert_token_ids[:self.max_seq_length - 2] # cls+sep. | |
if not bert_token_ids: | |
bert_token_ids = [ self.bert_tokenizer.pad_id ] # hack when empty seq | |
# Note that this rng state should be numpy and not python since | |
# python randint is inclusive whereas the numpy one is exclusive. | |
# We % 2**32 since numpy requres the seed to be between 0 and 2**32 - 1 | |
np_rng = np.random.RandomState(seed=((self.seed + idx) % 2**32)) | |
# Build sample. | |
sample = build_training_sample([bert_token_ids], | |
len(bert_token_ids), | |
len(bert_token_ids) + 2, # for cls+sep | |
self.vocab_id_list, | |
self.vocab_id_to_token_dict, | |
self.cls_id, self.sep_id, | |
self.mask_id, self.pad_id, | |
self.masked_lm_prob, np_rng, | |
binary_head=False) | |
sample["seq_length"] = len(sample["text"]) | |
return sample | |