peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/tools
/retro
/examples
/get_preprocess_cmd.sh
# Build preprocessing command for Retro. | |
set -u | |
DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd ) | |
################ Required environment variables. ################ | |
# Required environment variables: | |
# - REPO_DIR : Root directory of Megatron codebase. | |
# - RETRO_WORKDIR : Root directory of this Retro project's processed data. (For | |
# example, this project directory might be for a blended dataset, while | |
# another project directory might be for just a Wikipedia dataset, and | |
# another for just Book Corpus data, etc.) This project directory will | |
# contain a complete set of processed data, including the retrieval | |
# database, search index, and pretraining neighbors. | |
# - RETRO_TASKS : One of 'build', 'db-build', 'index-build', or | |
# 'pretraining-query-neighbors'. See 'Retro tasks' below for task | |
# descriptions. | |
# - DATA_BLEND_SCRIPT : Path to blended dataset definition file. | |
# - GPT_VOCAB_FILE : GPT vocab file. | |
# - GPT_MERGE_FILE : GPT merge file. | |
# - GPT_TOKENIZER : GPT tokenizer type (e.g., GPT2BPETokenizer) | |
# - BERT_LOAD_PATH : Bert checkpoint directory. | |
# - BERT_VOCAB_FILE : Bert vocab file. | |
# - BERT_TOKENIZER : Bert tokenizer type (e.g., BertWordPieceLowerCase, | |
# BertWordPieceCase). | |
# - BERT_EMBEDDER_TYPE : One of 'megatron' or 'huggingface'. | |
# - EXTRA_ARGS : Extra arguments (else, leave empty). | |
################ Data blend. ################ | |
. ${DATA_BLEND_SCRIPT} | |
DATA_PATH=${DATA_BLEND} | |
################ Retro setup. ################ | |
RETRO_GPT_SEQ_LENGTH=2048 | |
RETRO_GPT_CHUNK_LENGTH=64 | |
RETRO_GPT_MICRO_BATCH_SIZE=1 # *8 | |
RETRO_GPT_GLOBAL_BATCH_SIZE=256 | |
################ Retro tasks. ################ | |
# The '--retro-tasks' argument is a comma-separated list of tasks to run, in | |
# sequential order. For a quick start, simply set this to 'build' to run the | |
# entire preprocessing pipeline. For finer control, you may specify the list of | |
# tasks to run. This is desirable for tuning computational resources. For | |
# example, training the search index is relatively fast and utilizes GPUs, | |
# while querying the search index is relatively slow, CPU-only, and memory | |
# intensive (i.e., multiple populated search indexes are loaded simultaneously). | |
# *Note* : Once the task(s) below have been completed -- by running either | |
# 1) 'build', or 2) the sequential combination of 'db-build', 'index-build', | |
# and 'pretraining-query-neighbors' -- we are ready to pretrain Retro by | |
# calling pretrain_retro.py. | |
# ---- Option #1 : Run entire pipeline. ---- | |
# RETRO_TASKS="build" # (*note*: default tasks) | |
# ---- Option #2 : Run specific stages. ---- | |
# *Note*: Run the following stages in the given order. Optionally, tune your | |
# cluster setup for each stage, as described above. | |
# RETRO_TASKS="db-build" # ....................... run 1st | |
# RETRO_TASKS="index-build" # .................... run 2nd | |
# RETRO_TASKS="pretraining-query-neighbors" # .... run 3rd | |
################ Megatron args. ################ | |
MEGATRON_ARGS=" \ | |
--seed 1234 \ | |
--distributed-timeout-minutes 600 \ | |
--tokenizer-type ${BERT_TOKENIZER} \ | |
--tensor-model-parallel-size 1 \ | |
--pipeline-model-parallel-size 1 \ | |
--num-layers 24 \ | |
--hidden-size 1024 \ | |
--num-attention-heads 16 \ | |
--micro-batch-size ${RETRO_GPT_MICRO_BATCH_SIZE} \ | |
--global-batch-size ${RETRO_GPT_GLOBAL_BATCH_SIZE} \ | |
--seq-length 512 \ | |
--max-position-embeddings 512 \ | |
--train-samples ${RETRO_GPT_TRAIN_SAMPLES} \ | |
--load ${BERT_LOAD_PATH} \ | |
--exit-on-missing-checkpoint \ | |
--no-load-optim \ | |
--data-path ${DATA_PATH} \ | |
--vocab-file ${BERT_VOCAB_FILE} \ | |
--data-impl mmap \ | |
--split 98,2,0 \ | |
--distributed-backend nccl \ | |
--lr 0.0001 \ | |
--lr-decay-style linear \ | |
--min-lr 1.0e-5 \ | |
--lr-decay-samples ${LR_DECAY_SAMPLES} \ | |
--lr-warmup-samples ${LR_WARMUP_SAMPLES} \ | |
--weight-decay 1e-2 \ | |
--clip-grad 1.0 \ | |
--eval-interval ${RETRO_GPT_EVAL_INTERVAL} \ | |
--eval-iters ${RETRO_GPT_EVAL_ITERS} \ | |
--fp16 \ | |
--DDP-impl local \ | |
--dataloader-type ${DATALOADER_TYPE} \ | |
--no-data-sharding \ | |
--no-gradient-accumulation-fusion \ | |
--no-async-tensor-model-parallel-allreduce \ | |
" | |
################ Retro args. ################ | |
RETRO_ARGS=" \ | |
--bert-embedder-type ${BERT_EMBEDDER_TYPE} \ | |
--output-bert-embeddings \ | |
\ | |
--retro-gpt-vocab-file ${GPT_VOCAB_FILE} \ | |
--retro-gpt-merge-file ${GPT_MERGE_FILE} \ | |
--retro-gpt-tokenizer-type ${GPT_TOKENIZER} \ | |
--retro-gpt-seq-length ${RETRO_GPT_SEQ_LENGTH} \ | |
--retro-gpt-chunk-length ${RETRO_GPT_CHUNK_LENGTH} \ | |
--retro-bert-vocab-file ${BERT_VOCAB_FILE} \ | |
--retro-bert-tokenizer-type ${BERT_TOKENIZER} \ | |
\ | |
--retro-tasks ${RETRO_TASKS} \ | |
--retro-index-str ${RETRO_INDEX_STR} \ | |
--retro-ef-search ${RETRO_EF_SEARCH} \ | |
--retro-nprobe ${RETRO_NPROBE} \ | |
\ | |
--retro-workdir ${RETRO_WORKDIR} \ | |
--retro-nchunks-sampled ${RETRO_NCHUNKS_SAMPLED} \ | |
\ | |
--retro-return-doc-ids \ | |
" | |
################ Command. ################ | |
RETRO_PREPROCESS_CMD=" \ | |
./tools/retro/main.py \ | |
${MEGATRON_ARGS} \ | |
${RETRO_ARGS} \ | |
${EXTRA_ARGS} \ | |
" | |