peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/tools
/retro
/examples
/pretrain_model.sh
################################################## | |
# Example script for pretraining Retro. | |
################################################## | |
set -u | |
unset NCCL_DEBUG | |
export CUDA_DEVICE_MAX_CONNECTIONS=1 | |
NPROCS=8 # NPROCS must be <= number of GPUs. | |
################ Dataset configs. ################ | |
# This script contains methods to customize arguments to specific dataset | |
# types. Customize this script as needed for your datasets. | |
DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd ) | |
. $DIR/get_dataset_configs.sh | |
################ Environment variables. ################ | |
# *Note*: See 'Required environment variables' in 'get_preprocess_cmd.sh' for | |
# a description of the required environment variables. These variables can be | |
# set however a user would like. In our setup, we use another bash script | |
# (location defined by $RETRO_ENV_VARS) that sets all the environment variables | |
# at once. | |
. $RETRO_ENV_VARS | |
################ Data blend. ################ | |
. ${DATA_BLEND_SCRIPT} | |
DATA_PATH=${DATA_BLEND} | |
######## Retro setup. ######## | |
RETRO_ADD_RETRIEVER=0 | |
RETRO_CYCLIC_TRAIN_ITERS=750000 | |
RETRO_NUM_NEIGHBORS=2 | |
######## Arguments. ######## | |
CHECKPOINT_DIR=${RETRO_WORKDIR}/checkpoints/${RETRO_ADD_RETRIEVER} | |
TENSORBOARD_DIR="${CHECKPOINT_DIR}/tensorboard" | |
mkdir -p ${TENSORBOARD_DIR} | |
ARGS=" \ | |
--save-interval 1000 \ | |
--save ${CHECKPOINT_DIR} \ | |
--load ${CHECKPOINT_DIR} \ | |
--tensorboard-dir ${TENSORBOARD_DIR} \ | |
--log-interval 5 \ | |
--tensor-model-parallel-size 1 \ | |
--pipeline-model-parallel-size 1 \ | |
--num-layers 12 \ | |
--hidden-size 768 \ | |
--num-attention-heads 12 \ | |
--seq-length 2048 \ | |
--max-position-embeddings 2048 \ | |
--micro-batch-size 4 \ | |
--global-batch-size 256 \ | |
--train-samples ${RETRO_GPT_TRAIN_SAMPLES} \ | |
--lr-decay-samples ${LR_DECAY_SAMPLES} \ | |
--lr-warmup-samples ${LR_WARMUP_SAMPLES} \ | |
--lr 6.0e-4 \ | |
--min-lr 6.0e-5 \ | |
--lr-decay-style cosine \ | |
--eval-interval ${RETRO_GPT_EVAL_INTERVAL} \ | |
--eval-iters ${RETRO_GPT_EVAL_ITERS} \ | |
--data-path ${DATA_PATH} \ | |
--vocab-file ${GPT_VOCAB_FILE} \ | |
--merge-file ${GPT_MERGE_FILE} \ | |
--split 98,2,0 \ | |
--clip-grad 1.0 \ | |
--weight-decay 0.1 \ | |
--adam-beta1 0.9 \ | |
--adam-beta2 0.95 \ | |
--init-method-std 0.023 \ | |
--log-params-norm \ | |
--log-num-zeros-in-grad \ | |
--fp16 \ | |
--DDP-impl local \ | |
--dataloader-type ${DATALOADER_TYPE} \ | |
--no-data-sharding \ | |
--no-gradient-accumulation-fusion \ | |
" | |
if [ "$RETRO_ADD_RETRIEVER" = "0" ]; then | |
SCRIPT=pretrain_gpt.py | |
else | |
ARGS="${ARGS} \ | |
--retro-add-retriever \ | |
--retro-workdir ${RETRO_WORKDIR} \ | |
--retro-cyclic-train-iters ${RETRO_CYCLIC_TRAIN_ITERS} \ | |
--retro-num-neighbors ${RETRO_NUM_NEIGHBORS} \ | |
" | |
SCRIPT=pretrain_retro.py | |
fi | |
echo "~~~~~~~~~~~~~~~~~~~~~~~~~~" | |
echo "SCRIPT = '$SCRIPT'." | |
echo "ARGS = '$ARGS'." | |
echo "~~~~~~~~~~~~~~~~~~~~~~~~~~" | |
python -m torch.distributed.run \ | |
--nproc_per_node ${NPROCS} \ | |
--nnodes 1 \ | |
--node_rank 0 \ | |
--master_addr localhost \ | |
--master_port 6000 \ | |
${SCRIPT} \ | |
${ARGS} \ | |