applied-ai-018's picture
Add files using upload-large-folder tool
d0afae8 verified
#!/bin/bash
##################################################
# Example script for pretraining Retro.
##################################################
set -u
unset NCCL_DEBUG
export CUDA_DEVICE_MAX_CONNECTIONS=1
NPROCS=8 # NPROCS must be <= number of GPUs.
################ Dataset configs. ################
# This script contains methods to customize arguments to specific dataset
# types. Customize this script as needed for your datasets.
DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
. $DIR/get_dataset_configs.sh
################ Environment variables. ################
# *Note*: See 'Required environment variables' in 'get_preprocess_cmd.sh' for
# a description of the required environment variables. These variables can be
# set however a user would like. In our setup, we use another bash script
# (location defined by $RETRO_ENV_VARS) that sets all the environment variables
# at once.
. $RETRO_ENV_VARS
################ Data blend. ################
. ${DATA_BLEND_SCRIPT}
DATA_PATH=${DATA_BLEND}
######## Retro setup. ########
RETRO_ADD_RETRIEVER=0
RETRO_CYCLIC_TRAIN_ITERS=750000
RETRO_NUM_NEIGHBORS=2
######## Arguments. ########
CHECKPOINT_DIR=${RETRO_WORKDIR}/checkpoints/${RETRO_ADD_RETRIEVER}
TENSORBOARD_DIR="${CHECKPOINT_DIR}/tensorboard"
mkdir -p ${TENSORBOARD_DIR}
ARGS=" \
--save-interval 1000 \
--save ${CHECKPOINT_DIR} \
--load ${CHECKPOINT_DIR} \
--tensorboard-dir ${TENSORBOARD_DIR} \
--log-interval 5 \
--tensor-model-parallel-size 1 \
--pipeline-model-parallel-size 1 \
--num-layers 12 \
--hidden-size 768 \
--num-attention-heads 12 \
--seq-length 2048 \
--max-position-embeddings 2048 \
--micro-batch-size 4 \
--global-batch-size 256 \
--train-samples ${RETRO_GPT_TRAIN_SAMPLES} \
--lr-decay-samples ${LR_DECAY_SAMPLES} \
--lr-warmup-samples ${LR_WARMUP_SAMPLES} \
--lr 6.0e-4 \
--min-lr 6.0e-5 \
--lr-decay-style cosine \
--eval-interval ${RETRO_GPT_EVAL_INTERVAL} \
--eval-iters ${RETRO_GPT_EVAL_ITERS} \
--data-path ${DATA_PATH} \
--vocab-file ${GPT_VOCAB_FILE} \
--merge-file ${GPT_MERGE_FILE} \
--split 98,2,0 \
--clip-grad 1.0 \
--weight-decay 0.1 \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--init-method-std 0.023 \
--log-params-norm \
--log-num-zeros-in-grad \
--fp16 \
--DDP-impl local \
--dataloader-type ${DATALOADER_TYPE} \
--no-data-sharding \
--no-gradient-accumulation-fusion \
"
if [ "$RETRO_ADD_RETRIEVER" = "0" ]; then
SCRIPT=pretrain_gpt.py
else
ARGS="${ARGS} \
--retro-add-retriever \
--retro-workdir ${RETRO_WORKDIR} \
--retro-cyclic-train-iters ${RETRO_CYCLIC_TRAIN_ITERS} \
--retro-num-neighbors ${RETRO_NUM_NEIGHBORS} \
"
SCRIPT=pretrain_retro.py
fi
echo "~~~~~~~~~~~~~~~~~~~~~~~~~~"
echo "SCRIPT = '$SCRIPT'."
echo "ARGS = '$ARGS'."
echo "~~~~~~~~~~~~~~~~~~~~~~~~~~"
python -m torch.distributed.run \
--nproc_per_node ${NPROCS} \
--nnodes 1 \
--node_rank 0 \
--master_addr localhost \
--master_port 6000 \
${SCRIPT} \
${ARGS} \