peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/tools
/retro
/query
/chunk_dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | |
import os | |
import torch | |
from megatron import get_retro_args, print_rank_0 | |
from megatron.data.gpt_dataset import build_train_valid_test_datasets \ | |
as build_gpt_train_valid_test_datasets | |
from megatron.training import ( | |
build_train_valid_test_datasets as build_pretraining_train_valid_test_datasets, | |
update_train_iters, | |
) | |
from tools.retro.db.utils import get_indexed_dataset_infos | |
from tools.retro.utils import get_num_chunks_per_sample | |
from .utils import get_neighbor_dirname, get_query_workdir | |
class ChunkDataset(torch.utils.data.Dataset): | |
'''Pretraining chunk dataset wraps a standard GPT dataset. | |
This dataset conceptually divides each sample (e.g., length 2048) | |
into chunks (e.g., length 64) and restructures them into a list of | |
chunks (e.g., length num_samples * num_chunks_per_sample). | |
''' | |
def __init__(self, sample_dataset, chunk_length): | |
super().__init__() | |
self.sample_dataset = sample_dataset | |
self.chunk_length = chunk_length | |
self.n_chunks_per_sample = get_num_chunks_per_sample() | |
self.n_samples = len(sample_dataset) | |
self.n_chunks = self.n_samples * self.n_chunks_per_sample | |
def __len__(self): | |
return self.n_chunks | |
def __getitem__(self, idx): | |
# Convert global chunk index to global sample index & local chunk index. | |
sample_idx = idx // self.n_chunks_per_sample | |
chunk_idx = idx % self.n_chunks_per_sample | |
# Extract sample data. | |
sample = self.sample_dataset[sample_idx] | |
sample_token_ids = sample["text"] | |
sample_doc_ids = sample["doc_ids"] | |
# Chunk start/end token idxs. | |
token_start_idx = chunk_idx * self.chunk_length | |
token_end_idx = token_start_idx + self.chunk_length | |
chunk_token_ids = sample_token_ids[token_start_idx:token_end_idx] | |
# Sample. | |
return { | |
"doc_ids" : sample_doc_ids, | |
"text" : chunk_token_ids, | |
} | |
def verify_indexed_dataset_order(): | |
'''Verify pretraining order same as DB order.''' | |
args = get_retro_args() | |
# DB dataset prefixes. | |
db_indexed_dataset_infos = get_indexed_dataset_infos() | |
db_prefixes = [ info["prefix"] for info in db_indexed_dataset_infos ] | |
# Verify order & prefixes. | |
assert len(args.data_path) >= 2, "blendable dataset supported only." | |
pretraining_prefixes = args.data_path[1:None:2] | |
if len(db_prefixes) != len(pretraining_prefixes): | |
raise Exception("inconsistent dataset count between db & pretraining.") | |
if db_prefixes != pretraining_prefixes: | |
raise Exception("inconsistent dataset order between db & pretraining.") | |
def train_valid_test_datasets_provider(train_val_test_num_samples): | |
"""Build train, valid, and test datasets.""" | |
args = get_retro_args() | |
print_rank_0('> building train, validation, and test datasets ' | |
'for GPT ...') | |
train_ds, valid_ds, test_ds = build_gpt_train_valid_test_datasets( | |
data_prefix=args.retro_gpt_data_path, | |
data_impl=args.retro_gpt_data_impl, | |
splits_string=args.retro_gpt_split, | |
train_valid_test_num_samples=train_val_test_num_samples, | |
seq_length=args.retro_gpt_seq_length, | |
seed=args.retro_gpt_seed, | |
skip_warmup=(not args.retro_gpt_mmap_warmup), | |
return_doc_ids=args.retro_return_doc_ids) | |
print_rank_0("> finished creating pretrained GPT datasets ...") | |
return train_ds, valid_ds, test_ds | |
def get_chunk_dataset_map(): | |
'''Get train, valid, test chunk datasets.''' | |
args = get_retro_args() | |
# Update train iters. | |
update_train_iters(args) | |
args.iteration = 0 | |
args.consumed_train_samples = 0 | |
# Verify indexed dataset order. | |
verify_indexed_dataset_order() | |
# Datasets. | |
print_rank_0(" > datasets.") | |
train_ds, valid_ds, test_ds = build_pretraining_train_valid_test_datasets( | |
train_valid_test_datasets_provider) | |
sample_dataset_map = { | |
"train" : train_ds, | |
"valid" : valid_ds, | |
"test" : test_ds, | |
} | |
# Info dict. | |
chunk_dataset_map = { | |
key : { | |
"neighbor_dir" : get_neighbor_dirname(key, sample_ds), | |
"data" : ChunkDataset(sample_ds, args.retro_gpt_chunk_length), | |
} | |
for key, sample_ds in sample_dataset_map.items() if sample_ds | |
} | |
return chunk_dataset_map | |