peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/tools
/run_text_generation_server.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""Sample Generate GPT""" | |
import os | |
import sys | |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), | |
os.path.pardir))) | |
import socket | |
from megatron import get_args | |
from megatron import print_rank_0 | |
from megatron.core import mpu | |
from megatron.checkpointing import load_checkpoint | |
from megatron.initialize import initialize_megatron | |
from megatron.model import GPTModel | |
from megatron.training import get_model | |
from megatron.arguments import core_transformer_config_from_args | |
from megatron.text_generation_server import MegatronServer | |
from megatron.text_generation import generate_and_post_process | |
from megatron.text_generation import beam_search_and_post_process | |
import torch | |
def model_provider(pre_process=True, post_process=True): | |
"""Build the model.""" | |
config = core_transformer_config_from_args(get_args()) | |
print_rank_0('building GPT model ...') | |
model = GPTModel(config=config, num_tokentypes=0, parallel_output=False, pre_process=pre_process, post_process=post_process) | |
return model | |
def add_text_generate_args(parser): | |
group = parser.add_argument_group(title='text generation') | |
group.add_argument("--temperature", type=float, default=1.0, | |
help='Sampling temperature.') | |
group.add_argument("--top_p", type=float, default=0.0, | |
help='Top p sampling.') | |
group.add_argument("--top_k", type=int, default=0, | |
help='Top k sampling.') | |
group.add_argument("--out-seq-length", type=int, default=1024, | |
help='Size of the output generated text.') | |
return parser | |
if __name__ == "__main__": | |
initialize_megatron(extra_args_provider=add_text_generate_args, | |
args_defaults={'tokenizer_type': 'GPT2BPETokenizer', | |
'no_load_rng': True, | |
'no_load_optim': True}) | |
args = get_args() | |
if args.num_layers_per_virtual_pipeline_stage is not None: | |
print("Interleaved pipeline schedule is not yet supported for text generation.") | |
exit() | |
# Set up model and load checkpoint | |
model = get_model(model_provider, wrap_with_ddp=False) | |
if args.load is not None: | |
_ = load_checkpoint(model, None, None) | |
assert len(model) == 1, "Above condition should have caught this" | |
model = model[0] | |
if mpu.is_pipeline_first_stage() and mpu.get_tensor_model_parallel_rank() == 0: | |
server = MegatronServer(model) | |
server.run("0.0.0.0") | |
while True: | |
choice = torch.cuda.LongTensor(1) | |
torch.distributed.broadcast(choice, 0) | |
if choice[0].item() == 0: | |
try: | |
generate_and_post_process(model) | |
except ValueError as ve: | |
pass | |
elif choice[0].item() == 1: | |
try: | |
beam_search_and_post_process(model) | |
except ValueError as ve: | |
pass | |