applied-ai-018's picture
Add files using upload-large-folder tool
d0afae8 verified
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
import tqdm
import argparse
from dataclasses import dataclass
import torch
from deepspeed.checkpoint import DeepSpeedCheckpoint
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument(
"--folder", default=None, type=str, help="DeepSpeed Checkpoint folder"
)
parser.add_argument(
"--model_type",
default="GPT",
type=str,
help="Type of the model",
choices=["GPT", "BLOOM", "LLAMA"],
)
args = parser.parse_args()
print(f"args = {args}")
return args
def show_3d(ds_checkpoint):
src_3d = ds_checkpoint.zero_checkpoint.src_3d
dp, tp, pp = src_3d.dp_degree, src_3d.tp_degree, src_3d.pp_degree
print(f"3D configuration: DP={dp} TP={tp} PP={pp}")
def get_layer_patterns_for_non_sharded(model_type):
if model_type == "GPT":
return [
"position_embeddings.weight",
"input_layernorm.weight",
"input_layernorm.bias",
"self_attention.query_key_value.bias",
"self_attention.dense.bias",
"post_attention_layernorm.weight",
"post_attention_layernorm.bias",
"mlp.dense_h_to_4h.bias",
"mlp.dense_4h_to_h.bias",
"weight",
"bias",
]
elif model_type == "BLOOM":
return [
"input_layernorm.weight",
"input_layernorm.bias",
"self_attention.query_key_value.bias",
"self_attention.dense.bias",
"post_attention_layernorm.weight",
"post_attention_layernorm.bias",
"mlp.dense_h_to_4h.bias",
"mlp.dense_4h_to_h.bias",
"weight",
"bias",
]
elif model_type == "LLAMA":
return [
"input_layernorm.weight",
"input_layernorm.bias",
"self_attention.query_key_value.bias",
"self_attention.dense.bias",
"post_attention_layernorm.weight",
"post_attention_layernorm.bias",
"mlp.dense_h_to_4h.bias",
"mlp.dense_4h_to_h.bias",
"weight",
"bias",
]
def get_zero_patterns_for_non_sharded(model_type):
if model_type == "GPT":
patterns = [
r"tied_modules.embed.word_embeddings.norm.weight",
r"tied_modules.embed.word_embeddings.norm.bias",
r"tied_modules.embed.position_embeddings.weight",
r"\d+.self_attention.query_key_value.bias",
r"\d+.self_attention.dense.bias",
r"\d+.mlp.dense_h_to_4h.bias",
r"\d+.mlp.dense_4h_to_h.bias",
r"\d+.input_layernorm.weight",
r"\d+.input_layernorm.bias",
r"\d+.post_attention_layernorm.weight",
r"\d+.post_attention_layernorm.bias",
r"\d+.weight",
r"\d+.bias",
]
return patterns
if model_type == "BLOOM":
patterns = [
r"tied_modules.embed.word_embeddings.norm.weight",
r"tied_modules.embed.word_embeddings.norm.bias",
r"\d+.self_attention.query_key_value.bias",
r"\d+.self_attention.dense.bias",
r"\d+.mlp.dense_h_to_4h.bias",
r"\d+.mlp.dense_4h_to_h.bias",
r"\d+.input_layernorm.weight",
r"\d+.input_layernorm.bias",
r"\d+.post_attention_layernorm.weight",
r"\d+.post_attention_layernorm.bias",
r"\d+.weight",
r"\d+.bias",
]
return patterns
if model_type == "LLAMA":
patterns = [
r"\d+.word_embeddings.bias",
r"\d+.self_attention.query_key_value.bias",
r"\d+.self_attention.dense.bias",
r"\d+.mlp.dense_h_to_4h.bias",
r"\d+.mlp.dense_4h_to_h.bias",
r"\d+.input_layernorm.weight",
r"\d+.input_layernorm.bias",
r"\d+.post_attention_layernorm.weight",
r"\d+.post_attention_layernorm.bias",
r"\d+.weight",
r"\d+.bias",
]
return patterns
@dataclass
class ParamInfo:
pp: int
tp: int
dp: int
data: torch.Tensor
numel: int
def get_zero_pp_stage_non_sharded_params(
ds_checkpoint, model_type, pp_stage, dp_stage
):
patterns = get_zero_patterns_for_non_sharded(model_type)
params = {}
for tp_stage in tqdm.tqdm(range(ds_checkpoint.tp_degree), desc="bf16 zero files"):
sd = ds_checkpoint.get_zero_checkpoint_state(
pp_index=pp_stage, tp_index=tp_stage, dp_index=dp_stage
)
optim_sd = sd["optimizer_state_dict"]
param_slice_mappings = optim_sd["param_slice_mappings"]
state_groups = optim_sd["base_optimizer_state"]["state"]
fp32_groups = optim_sd["single_partition_of_fp32_groups"]
for param_group_id in range(len(state_groups)):
flat_state = dict(
exp_avg=state_groups[param_group_id]["exp_avg"],
exp_avg_sq=state_groups[param_group_id]["exp_avg_sq"],
fp32=fp32_groups[param_group_id],
)
for name, fragment_mapping in param_slice_mappings[param_group_id].items():
if not any(re.match(pattern, name) for pattern in patterns):
continue
for state_key in flat_state.keys():
tensor = (
flat_state[state_key]
.narrow(
dim=0,
start=fragment_mapping.start,
length=fragment_mapping.numel,
)
.clone()
)
info = ParamInfo(
pp=pp_stage,
tp=tp_stage,
dp=dp_stage,
data=tensor,
numel=fragment_mapping.numel,
)
full_name = name + ".__" + state_key
if full_name not in params:
params[full_name] = []
params[full_name].append(info)
return params
def verify_equal_params(params, tp):
failed = 0
report = {}
for name, info in params.items():
n = len(info)
if n != tp:
ok = False
print(f"{name}: FAILED expected n={n} == tp={tp}")
elif n == 1:
ok = True
else:
ok = all([(x.numel == info[0].numel) for x in info[1:]])
if not ok:
print(f"{name}: FAILED numel comparison [n={n}]")
else:
ok = all([x.data.eq(info[0].data).all().item() for x in info[1:]])
if not ok:
print(f"{name}: FAILED data comparison [n={n}]")
failed += ok == False
report[name] = (ok, n)
if ok:
print(f"{name}: OK [n={n}]")
return failed, report
def update_layer_non_sharded_params(params, model_type, filename, pp_index, tp_index):
layer_id, file_tp_index = re.search("layer_(\d+)-model_(\d+)", filename).groups()
layer_id = int(layer_id)
file_tp_index = int(file_tp_index)
# assert tp_index == file_tp_index, f'Inconsistent tp index tp_index={tp_index} file_tp_index={file_tp_index}'
if tp_index != file_tp_index:
print("bad")
sd = torch.load(filename, map_location=torch.device("cpu"))
sequential_layers = get_layer_patterns_for_non_sharded(model_type)
for key in sd.keys():
if key in sequential_layers:
param_key = str(layer_id) + "." + key
if param_key not in params:
params[param_key] = []
info = ParamInfo(
pp=pp_index, tp=tp_index, dp=-1, data=sd[key], numel=sd[key].numel()
)
params[param_key].append(info)
return params
def verify_layer_files(ds_checkpoint, model_type):
src_3d = ds_checkpoint.zero_checkpoint.src_3d
dp, tp, pp = src_3d.dp_degree, src_3d.tp_degree, src_3d.pp_degree
total_failed = 0
for pp_index in range(pp):
print(f"\nChecking pp_stage={pp_index}")
params = {}
if pp_index == 0:
for tp_index in range(tp):
for filename in ds_checkpoint.tp_to_embedding_map[tp_index]:
update_layer_non_sharded_params(
params, model_type, filename, pp_index, tp_index
)
for tp_index in range(tp):
for filename_list in ds_checkpoint.transformer_file_map[
(tp_index, pp_index)
]:
for filename in filename_list:
update_layer_non_sharded_params(
params, model_type, filename, pp_index, tp_index
)
if pp_index == (pp - 1):
for tp_index in range(tp):
for filename in ds_checkpoint.tp_to_final_norm_map[tp_index]:
update_layer_non_sharded_params(
params, model_type, filename, pp_index, tp_index
)
failed, report = verify_equal_params(params, tp)
total_failed += failed
return total_failed
def verify_zero_files(ds_checkpoint, model_type):
src_3d = ds_checkpoint.zero_checkpoint.src_3d
dp, tp, pp = src_3d.dp_degree, src_3d.tp_degree, src_3d.pp_degree
total_failed = 0
for i in range(pp):
for j in range(dp):
print(f"\nChecking pp_stage={i} dp_stage={j}")
params = get_zero_pp_stage_non_sharded_params(
ds_checkpoint, model_type, pp_stage=i, dp_stage=j
)
failed, report = verify_equal_params(params, tp)
total_failed += failed
return total_failed
def verify_checkpoint(folder, model_type):
final_layer_norm_idx = -2 if model_type == "LLAMA" else -1
ds_checkpoint = DeepSpeedCheckpoint(
folder, final_layer_norm_idx=final_layer_norm_idx
)
ds_checkpoint.validate_files()
show_3d(ds_checkpoint)
print("\nVerify ** layer_ ** files")
total_failed_layer = verify_layer_files(ds_checkpoint, model_type)
if total_failed_layer == 0:
print("\nCheckpoint layer files OK")
else:
print(f"\nCheckpoint layer files BAD with total_failed={total_failed_layer}")
print("\nVerify ** bf16_zero_ ** files")
total_failed_zero = verify_zero_files(ds_checkpoint, model_type)
if total_failed_zero == 0:
print("\nCheckpoint zero files OK")
else:
print(f"\nCheckpoint zero files BAD with total_failed={total_failed_zero}")
return (total_failed_layer + total_failed_zero) == 0
def main():
print(f"Verify DeepSpeed Checkpoint consistency for non-TP-sharded parameters")
args = parse_arguments()
assert (
verify_checkpoint(args.folder, args.model_type) is True
), "Checkpoint verification failed"
if __name__ == "__main__":
main()