applied-ai-018's picture
Add files using upload-large-folder tool
5203884 verified
# coding=utf-8
# Copyright (c) 2023 Habana Labs, Ltd. an Intel Company.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pretrain utilities."""
from datetime import datetime
import math
import sys
import os
import time
import json
import numpy as np
# The earliest we can measure the start time.
# TODO: Workaround as not supporting float64
_TRAIN_START_TIME = time.time()
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from megatron import get_args
from megatron import get_timers
from megatron import get_tensorboard_writer
from megatron import get_current_global_batch_size
from megatron import get_num_microbatches, get_num_eval_microbatches
from megatron import is_last_rank
from megatron import update_num_microbatches
from megatron import mpu
from megatron import print_rank_0
from megatron import print_rank_last
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
from megatron.model import Float16Module
from megatron.mpu.data import reset_cached_broadcast_sizes
from megatron.optimizer import get_megatron_optimizer
from megatron.initialize import initialize_megatron
from megatron.initialize import write_args_to_tensorboard
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
from megatron.utils import unwrap_model, found_kill_switch
from megatron.data.data_samplers import build_pretraining_data_loader
from megatron.data.gpt_dataset import build_train_valid_test_datasets
from megatron.utils import calc_params_l2_norm
from megatron.schedules import forward_backward_no_pipelining
from megatron.schedules import forward_backward_pipelining_without_interleaving
from megatron.schedules import forward_backward_pipelining_with_interleaving
from megatron.utils import report_memory, throughput_calculator, checkpoint_throughput_calculator
from megatron.global_vars import get_current_device, get_current_device_index
from megatron.profiler import setup_profiler, trigger, on_step_begin, on_step_end
import deepspeed
from deepspeed.compression.compress import init_compression, redundancy_clean
from contextlib import nullcontext
from megatron.mpu.layers import ColumnParallelLinear, RowParallelLinear
import habana_frameworks.torch.core as htcore
def print_datetime(string):
"""Note that this call will sync across all ranks."""
torch.distributed.barrier()
time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print_rank_0('[' + string + '] datetime: {} '.format(time_str))
FP8_RECIPE=None
def get_hpu_fp8_recipe():
from habana_frameworks.torch.hpex.experimental.transformer_engine import recipe
global FP8_RECIPE
if FP8_RECIPE is None:
fp8_format = recipe.Format.E5M2
fp8_margin = 0
fp8_interval = get_args().hpu_fp8_measure_interval
FP8_RECIPE = recipe.DelayedScaling(
margin=fp8_margin,
interval=fp8_interval,
fp8_format=fp8_format,
amax_history_len=1,
amax_compute_algo="most_recent",
reduce_amax=False,
)
return FP8_RECIPE
def pretrain(train_valid_test_dataset_provider,
model_provider,
forward_step_func,
extra_args_provider=None,
args_defaults={}):
"""Main training program.
This function will run the followings in the order provided:
1) initialize Megatron.
2) setup model, optimizer and lr schedule using the model_provider.
3) call train_val_test_data_provider to get train/val/test datasets.
4) train the modle using the forward_step_func.
Arguments:
train_valid_test_dataset_provider: a function that takes the size of
train/valid/test dataset and returns `train, valid, test` datasets.
model_provider: a function that returns a vanilla version of the
model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
forward_step_func: a function that takes a `data iterator` and `model`,
and returns a `loss` scalar with a dictionary with key:values being
the info we would like to monitor during training, for example
`lm-loss: value`. We also require that this function add
`batch generator` to the timers class.
extra_args_provider: a function that takes a parser and adds arguments
to it. It is used for programs to add their own arguments.
args_defaults: a dictionary from argument-name to argument-value. It
to set already parse arguments.
"""
# Initalize and get arguments, timers, and Tensorboard writer.
_, mllogger = initialize_megatron(extra_args_provider=extra_args_provider,
args_defaults=args_defaults)
args = get_args()
if found_kill_switch():
print_datetime(f"Detected kill switch at {args.kill_switch_path}. Exiting")
sys.exit()
# Adjust the startup time so it reflects the largest value.
# This will be closer to what scheduler will see (outside of
# image ... launches.
global _TRAIN_START_TIME
# TODO: Make it back torch.DoubleTensor once supporting float64
start_time_tensor = torch.FloatTensor([_TRAIN_START_TIME]).to(get_current_device())
torch.distributed.all_reduce(start_time_tensor,
op=torch.distributed.ReduceOp.MIN)
_TRAIN_START_TIME = start_time_tensor.item()
print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
time.time() - _TRAIN_START_TIME))
print_datetime('after megatron is initialized')
timers = get_timers()
if args.deepspeed:
args.deepspeed_configuration = json.load(
open(args.deepspeed_config, 'r', encoding='utf-8'))
if "curriculum_learning" in args.deepspeed_configuration and \
"enabled" in args.deepspeed_configuration["curriculum_learning"]:
args.curriculum_learning = args.deepspeed_configuration[
"curriculum_learning"]["enabled"]
if args.curriculum_learning and not args.no_pipeline_parallel:
from deepspeed.runtime.data_pipeline.curriculum_scheduler \
import CurriculumScheduler
args.curriculum_scheduler = CurriculumScheduler(
args.deepspeed_configuration["curriculum_learning"])
if "compression_training" in args.deepspeed_configuration:
args.compression_training = True
if args.universal_checkpoint:
args.deepspeed_configuration["checkpoint"] = {"load_universal": True}
# Clear deepspeed_config to force deepspeed to take config from args.deepspeed_configuration at initialize()
args.deepspeed_config = None
mllogger.event(key=mllogger.constants.SUBMISSION_ORG, value='Habana')
mllogger.event(key=mllogger.constants.SUBMISSION_PLATFORM, value=f'gaudi-{torch.distributed.get_world_size()}')
mllogger.event(key=mllogger.constants.SUBMISSION_STATUS, value='onprem')
mllogger.event(key=mllogger.constants.SUBMISSION_DIVISION, value='closed')
mllogger.event(key=mllogger.constants.SUBMISSION_BENCHMARK, value='gpt3')
mllogger.event(key=mllogger.constants.SEED, value=args.seed, sync=False)
mllogger.event(key=mllogger.constants.CACHE_CLEAR)
if args.optimizer in ['adam', 'adamw', 'fusedadamw']:
opt_name = mllogger.constants.ADAM
elif args.optimizer == 'sgd':
opt_name = mllogger.constants.SGD
else:
raise Exception('Unknown optimizer {}.'.format(args.optimizer))
mllogger.event(key="opt_name", value=opt_name, sync=False)
mllogger.event(key="opt_adam_beta_1", value=args.adam_beta1, sync=False)
mllogger.event(key="opt_adam_beta_2", value=args.adam_beta2, sync=False)
mllogger.event(key="opt_adam_epsilon", value=args.adam_eps, sync=False)
mllogger.event(key="opt_weight_decay", value=args.weight_decay, sync=False)
mllogger.event(key=mllogger.constants.OPT_BASE_LR, value=args.lr, sync=False)
mllogger.event(key="opt_end_learning_rate", value=args.min_lr, sync=False)
if args.lr_decay_samples is not None:
mllogger.event(key="opt_learning_rate_decay_steps", value=math.ceil(args.lr_decay_samples / args.global_batch_size), sync=False)
mllogger.event(key="opt_learning_rate_warmup_steps", value=math.ceil(args.lr_warmup_samples / args.global_batch_size), sync=False)
mllogger.event(key="opt_learning_rate_decay_schedule", value="cosine with linear warmup", sync=False)
mllogger.event(key="opt_gradient_clip_norm", value=args.clip_grad, sync=False)
mllogger.event(key="init_checkpoint_step", value=math.ceil(args.ext_lr_steps / args.global_batch_size), sync=False)
mllogger.event(key=mllogger.constants.GLOBAL_BATCH_SIZE, value=args.global_batch_size, sync=False)
mllogger.event(key=mllogger.constants.GRADIENT_ACCUMULATION_STEPS,
value=get_num_microbatches(), sync=False, unique=True)
mllogger.event(key="max_sequence_length", value=args.seq_length, sync=False)
mllogger.event(key=mllogger.constants.EVAL_SAMPLES, value=11590004, sync=False)
mllogger.event(key="num_layers", value=args.num_layers, sync=False)
mllogger.event(key="num_heads", value=args.num_attention_heads, sync=False)
mllogger.event(key="hidden_size", value=args.hidden_size, sync=False)
mllogger.event(key="ffn_hidden_size", value=args.ffn_hidden_size, sync=False)
mllogger.event(key="hidden_dropout", value=args.hidden_dropout, sync=False)
mllogger.event(key="attention_dropout", value=args.attention_dropout, sync=False)
mllogger.event(key="layernorm_epsilon", value=args.layernorm_epsilon, sync=False)
mllogger.event(key="tokenizer", value="SPM", sync=False)
mllogger.event(key="dataset", value="C4", sync=False)
# Model, optimizer, and learning rate.
teacher_model = None
if args.mos or args.kd: # Set up teacher model
teacher_model = setup_teacher_model(args, model_provider)
timers('model-and-optimizer-setup').start()
model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider, teacher=False)
timers('model-and-optimizer-setup').stop()
print_datetime('after model, optimizer, and learning rate '
'scheduler are built')
iteration = args.iteration
if args.device_warmup:
assert args.warmup_dataset_path is not None, f'--warmup-dataset-path not provided'
warmup_train_iterator, warmup_valid_iterator = build_warmup_iterators()
prefix = 'Warmup'
warmup(args, forward_step_func, warmup_train_iterator, warmup_valid_iterator, model, optimizer, lr_scheduler, teacher_model, prefix, iteration, mllogger)
mllogger.log_init_stop_run_start()
# Data stuff.
timers('train/valid/test-data-iterators-setup').start()
if args.virtual_pipeline_model_parallel_size is not None:
all_data_iterators = [
build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
for _ in range(len(model))
]
train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
else:
train_data_iterator, valid_data_iterator, test_data_iterator \
= build_train_valid_test_data_iterators(
train_valid_test_dataset_provider)
timers('train/valid/test-data-iterators-setup').stop()
print_datetime('after dataloaders are built')
# Print setup timing.
print_rank_0('done with setup ...')
timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
iteration = args.iteration
mllogger.start(key=mllogger.constants.BLOCK_START,
metadata={'first_epoch_num': 0,
'epoch_count': args.eval_interval * args.global_batch_size * args.seq_length},
sync=False)
mllogger.start(key=mllogger.constants.EPOCH_START,
metadata={'epoch_num': 0},
sync=False)
if args.do_valid and args.do_pretrain_validation:
prefix = 'evaluation on val data for the initial checkpoint weights'
evaluate_and_print_results(prefix, forward_step_func,
valid_data_iterator, model,
iteration, False, mllogger=mllogger)
if args.do_train and args.train_iters > 0:
print_rank_0('training ...')
iteration = train(forward_step_func,
model, optimizer, lr_scheduler,
train_data_iterator, valid_data_iterator,
teacher_model=teacher_model, mllogger=mllogger)
training_prefix = 'the end of training'
print_datetime('after training is done')
else:
training_prefix = 'skipping training'
print_rank_0('skipping training ...')
if args.do_valid:
prefix = ' '.join([training_prefix, 'for val data'])
evaluate_and_print_results(prefix, forward_step_func,
valid_data_iterator, model,
iteration, False, mllogger=mllogger)
# Clean the model and do evaluation again
if args.compression_training:
model = [redundancy_clean(model[0], args.deepspeed_config, mpu)]
if args.do_valid:
prefix = ' '.join([training_prefix,
'and after model cleaning for val data'])
evaluate_and_print_results(prefix, forward_step_func,
valid_data_iterator, model,
iteration, False, mllogger=mllogger)
if args.save and (iteration != args.iteration or args.universal_checkpoint):
save_checkpoint(iteration, model, optimizer, lr_scheduler)
if args.do_test:
# Run on test data.
prefix = ' '.join([training_prefix, 'for test data'])
evaluate_and_print_results(prefix, forward_step_func,
test_data_iterator, model,
0, True, mllogger=mllogger)
mllogger.event(key=mllogger.constants.TRAIN_SAMPLES,
value=args.consumed_train_samples - args.ext_lr_steps,
sync=False)
mllogger.end(key=mllogger.constants.BLOCK_STOP,
metadata={'first_epoch_num': 0},
sync=False)
mllogger.end(key=mllogger.constants.EPOCH_STOP,
metadata={'epoch_num': (args.consumed_train_samples - args.ext_lr_steps)
* args.seq_length}, sync=False)
status = 'fail'
mllogger.log_run_stop(status)
def update_train_iters(args):
# For iteration-based training, we don't need to do anything
if args.train_iters:
return
# Constant batch size with sample-based training.
if args.rampup_batch_size is None:
args.train_iters = args.train_samples // args.global_batch_size
else:
# Sample based training with rampup batch size.
iterations = 0
consumed_samples = 0
# Rampup phase.
while consumed_samples <= int(args.rampup_batch_size[2]):
update_num_microbatches(consumed_samples, consistency_check=False)
consumed_samples += get_current_global_batch_size()
iterations += 1
# Reset
update_num_microbatches(0, consistency_check=False)
# Constant phase
# Note that we throw away any partial last batch.
iterations += (args.train_samples - consumed_samples) // \
args.global_batch_size
args.train_iters = iterations
print_rank_0('setting training iterations to {}'.format(args.train_iters))
def setup_teacher_model(args, model_provider):
print_rank_0('***>>>>> Student model checkpoint iteration:{}'.format(args.iteration))
iteration_stuent = args.iteration
num_layers_student = args.num_layers
num_experts_student = args.num_experts
hidden_size_student = args.hidden_size
num_attention_heads_student = args.num_attention_heads
load_student = args.load
print_rank_0('***>>>>> Setting up the teacher model')
args.num_layers = args.num_layers_teacher
args.num_experts = args.num_experts_teacher
args.hidden_size = args.hidden_size_teacher
args.num_attention_heads = args.num_attention_heads_teacher
args.load = args.load_teacher
teacher_model, _, _ = load_model_weights_only(model_provider)
print_rank_0('***>>>>> Teacher model:{}'.format(teacher_model))
args.num_layers = num_layers_student
args.num_experts = num_experts_student
args.hidden_size = hidden_size_student
args.num_attention_heads = num_attention_heads_student
args.load = load_student
args.iteration = iteration_stuent
return teacher_model
def get_model(model_provider_func):
"""Build the model."""
args = get_args()
# Build model.
if mpu.get_pipeline_model_parallel_world_size() > 1 and \
args.virtual_pipeline_model_parallel_size is not None:
model = []
for i in range(args.virtual_pipeline_model_parallel_size):
mpu.set_virtual_pipeline_model_parallel_rank(i)
# Set pre_process and post_process only after virtual rank is set.
pre_process = mpu.is_pipeline_first_stage()
post_process = mpu.is_pipeline_last_stage()
this_model = model_provider_func(
pre_process=pre_process,
post_process=post_process
)
model.append(this_model)
else:
pre_process = mpu.is_pipeline_first_stage()
post_process = mpu.is_pipeline_last_stage()
model = model_provider_func(
pre_process=pre_process,
post_process=post_process
)
if not isinstance(model, list):
model = [model]
# Set tensor model parallel attributes if not set.
# Only parameters that are already tensor model parallel have these
# attributes set for them. We should make sure the default attributes
# are set for all params so the optimizer can use them.
for model_module in model:
for param in model_module.parameters():
mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
# Print number of parameters.
if mpu.get_data_parallel_rank() == 0:
print(' > number of parameters on (tensor, pipeline) '
'model parallel rank ({}, {}): {}'.format(
mpu.get_tensor_model_parallel_rank(),
mpu.get_pipeline_model_parallel_rank(),
sum([sum([p.ds_numel if hasattr(p, 'ds_id') else p.nelement() for p in model_module.parameters()])
for model_module in model])), flush=True)
if args.deepspeed:
return model
# GPU allocation.
for model_module in model:
model_module.to(get_current_device())
# Fp16 conversion.
if args.fp16 or args.bf16:
model = [Float16Module(model_module, args) for model_module in model]
if args.DDP_impl == 'torch':
i = get_current_device_index()
device = get_current_device()
model = [torchDDP(model_module, device_ids=[i], output_device=device,
process_group=mpu.get_data_parallel_group())
for model_module in model]
return model
if args.DDP_impl == 'local':
model = [LocalDDP(model_module,
args.accumulate_allreduce_grads_in_fp32,
args.use_contiguous_buffers_in_ddp)
for model_module in model]
return model
raise NotImplementedError('Unknown DDP implementation specified: {}. '
'Exiting.'.format(args.DDP_impl))
def get_learning_rate_scheduler(optimizer):
"""Build the learning rate scheduler."""
args = get_args()
# Iteration-based training.
if args.train_iters:
if args.lr_decay_iters is None:
args.lr_decay_iters = args.train_iters
decay_steps = args.lr_decay_iters * args.global_batch_size
if args.lr_warmup_fraction is not None:
warmup_steps = args.lr_warmup_fraction * decay_steps
else:
warmup_steps = args.lr_warmup_iters * args.global_batch_size
# Sample-based training.
elif args.train_samples:
# We need to set training iters for later use. Technically
# we need to adjust the training samples too (due to last
# batch being incomplete) but we leave it as is for now.
update_train_iters(args)
if args.lr_decay_samples is None:
args.lr_decay_samples = args.train_samples
decay_steps = args.lr_decay_samples
if args.lr_warmup_fraction is not None:
warmup_steps = args.lr_warmup_fraction * decay_steps
else:
warmup_steps = args.lr_warmup_samples
else:
raise Exception(
'either train-iters or train-samples should be provided.')
lr_scheduler = AnnealingLR(
optimizer,
max_lr=args.lr,
min_lr=args.min_lr,
warmup_steps=warmup_steps,
decay_steps=decay_steps,
decay_style=args.lr_decay_style,
use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
override_lr_scheduler=args.override_lr_scheduler)
return lr_scheduler
def sync_hp_to_lp(optimizer):
optimizer.update_lp_params()
def load_model_weights_only(model_provider_func):
"""Setup model and optimizer."""
args = get_args()
print_rank_0('***>>>>> Args:{}'.format(args))
model = get_model(model_provider_func)
optimizer = None
lr_scheduler = None
if args.deepspeed:
with open(args.deepspeed_config, 'r') as fd:
ds_config = json.load(fd)
# When loading just the model weights, ZeRO can be disabled.
if 'zero_optimization' in ds_config:
del ds_config['zero_optimization']
model, optimizer, _, lr_scheduler = deepspeed.initialize(
model=model[0],
config=ds_config
)
assert not isinstance(model, deepspeed.PipelineEngine), \
'Weight loading only mode is not supported in pipeline parallelism yet.'
model = [model]
print_datetime('before load checkpoint')
if args.load is not None and not args.device_warmup:
iteration = load_checkpoint(model, optimizer, lr_scheduler, strict=True, load_only_weights=True)
print_datetime('after load checkpoint weights')
return model, optimizer, lr_scheduler
def setup_model_and_optimizer(model_provider_func, teacher=False):
"""Setup model and optimizer."""
args = get_args()
model = get_model(model_provider_func)
# initialize the compression here
student_global_steps = 0
if args.kd or args.mos:
model, _, _, _ = deepspeed.initialize(
model=model[0],
args=args,
mpu=mpu if args.no_pipeline_parallel else None
)
model = [model]
if args.load is not None and not args.device_warmup:
args.iteration = load_checkpoint(model, None, None, strict=False)
else:
args.iteration = 0
student_global_steps = model[0].global_steps
print_rank_0('***>>>>> Student model, global step:{}'.format(student_global_steps))
if args.compression_training:
model, _, _, _ = deepspeed.initialize(
model=model[0],
args=args,
mpu=mpu if args.no_pipeline_parallel else None
)
model = [model]
model = [init_compression(model[0].module, args.deepspeed_config, mpu)]
unwrapped_model = unwrap_model(model,
(torchDDP, LocalDDP, Float16Module))
if args.inference:
optimizer = None
lr_scheduler = None
else:
if teacher:
optimizer = None
else:
optimizer = get_megatron_optimizer(unwrapped_model)
lr_scheduler = get_learning_rate_scheduler(optimizer)
if args.deepspeed:
print_rank_0("DeepSpeed is enabled.")
model, optimizer, _, lr_scheduler = deepspeed.initialize(
model=model[0],
optimizer=optimizer,
args=args,
config=args.deepspeed_configuration,
lr_scheduler=lr_scheduler,
mpu=mpu if args.no_pipeline_parallel else None
)
if isinstance(model, deepspeed.PipelineEngine):
# hack to get batch_fn from pretrain_gpt.py
model.set_batch_fn(model.module._megatron_batch_fn)
assert model.grid.get_pipe_parallel_rank() == mpu.get_pipeline_model_parallel_rank()
assert model.grid.get_slice_parallel_rank() == mpu.get_tensor_model_parallel_rank()
assert model.grid.get_data_parallel_rank() == mpu.get_data_parallel_rank()
model = [model]
# Compression has its own checkpoint loading path (e.g, loading both teacher and student models). So if compression is enabled, we skip the following checkpoint loading.
no_post_init_checkpoint_loading = args.kd or args.mos
if not no_post_init_checkpoint_loading:
if args.load is not None and not args.device_warmup:
timers = get_timers()
# Extra barrier is added to make sure all ranks report the
# max time.
torch.distributed.barrier()
timers('load-checkpoint').start()
args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
torch.distributed.barrier()
timers('load-checkpoint').stop()
timers.log(['load-checkpoint'])
# hp -> lp
if args.deepspeed and args.universal_checkpoint:
sync_hp_to_lp(optimizer)
else:
args.iteration = 0
else:
model[0].global_steps = student_global_steps
# We only support local DDP with multiple micro-batches.
if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
assert args.DDP_impl == 'local'
# get model without FP16 and/or TorchDDP wrappers
if args.iteration == 0 and len(unwrapped_model) == 1 \
and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
print_rank_0("Initializing ICT from pretrained BERT model")
unwrapped_model[0].init_state_dict_from_bert()
if args.fp16:
optimizer.reload_model_params()
return model, optimizer, lr_scheduler
def deepspeed_train_step(data_iterator, model, args):
skipped_iter = 0
num_zeros_in_grad = 0
assert isinstance(model, deepspeed.PipelineEngine)
from habana_frameworks.torch.hpex.experimental.transformer_engine import fp8_autocast
with fp8_autocast(enabled=args.use_hpu_fp8_transformer_engine, fp8_recipe=get_hpu_fp8_recipe()):
loss = model.train_batch(data_iter=data_iterator)
grad_norm = model.get_global_grad_norm()
return {'lm loss' : loss}, skipped_iter, grad_norm, num_zeros_in_grad
def train_step(forward_step_func, data_iterator,
model, optimizer, lr_scheduler, teacher_model=None):
"""Single training step."""
args = get_args()
timers = get_timers()
if args.deepspeed and args.ds_pipeline_enabled:
return deepspeed_train_step(data_iterator, model[0], args)
# Set grad to zero.
if not args.deepspeed:
if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_ddp:
for partition in model:
partition.zero_grad_buffer()
else:
optimizer.zero_grad()
if mpu.get_pipeline_model_parallel_world_size() > 1:
if args.virtual_pipeline_model_parallel_size is not None:
forward_backward_func = forward_backward_pipelining_with_interleaving
assert get_num_microbatches() % args.pipeline_model_parallel_size == 0, \
'number of microbatches is not divisible by pipeline-parallel ' \
'size when using interleaved schedule'
else:
forward_backward_func = forward_backward_pipelining_without_interleaving
else:
forward_backward_func = forward_backward_no_pipelining
losses_reduced = forward_backward_func(
forward_step_func, data_iterator, model,
optimizer, timers, forward_only=False, teacher_model=teacher_model)
# All-reduce if needed.
if not args.deepspeed and args.DDP_impl == 'local':
timers('backward-params-all-reduce').start()
for model_module in model:
model_module.allreduce_gradients()
timers('backward-params-all-reduce').stop()
# All-reduce word_embeddings' grad across first and last stages to ensure
# that word_embeddings parameters stay in sync.
# This should only run for models that support pipelined model parallelism
# (BERT and GPT-2).
timers('backward-embedding-all-reduce').start()
if not args.deepspeed:
if (mpu.is_pipeline_first_stage(ignore_virtual=True) or
mpu.is_pipeline_last_stage(ignore_virtual=True)) and \
mpu.get_pipeline_model_parallel_world_size() > 1:
if mpu.is_pipeline_first_stage(ignore_virtual=True):
unwrapped_model = model[0]
elif mpu.is_pipeline_last_stage(ignore_virtual=True):
unwrapped_model = model[-1]
unwrapped_model = unwrap_model(
unwrapped_model, (torchDDP, LocalDDP, Float16Module))
if unwrapped_model.share_word_embeddings:
word_embeddings_weight = unwrapped_model.word_embeddings_weight()
if args.DDP_impl == 'local':
grad = word_embeddings_weight.main_grad
else:
grad = word_embeddings_weight.grad
torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
timers('backward-embedding-all-reduce').stop()
# Update parameters.
timers('optimizer').start()
if args.deepspeed:
increment = get_num_microbatches() * \
args.micro_batch_size * \
args.data_parallel_size
model[0].step(lr_kwargs={'increment': increment})
update_successful = model[0].was_step_applied()
else:
update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
timers('optimizer').stop()
# Update learning rate.
if args.deepspeed:
skipped_iter = 0
grad_norm = None
num_zeros_in_grad = None
loss_reduced = {}
for key in losses_reduced[0]:
losses_reduced_for_key = [x[key] for x in losses_reduced]
loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
else:
if update_successful:
increment = get_num_microbatches() * \
args.micro_batch_size * \
args.data_parallel_size
lr_scheduler.step(increment=increment)
skipped_iter = 0
else:
skipped_iter = 1
if mpu.is_pipeline_last_stage(ignore_virtual=True):
# Average loss across microbatches.
loss_reduced = {}
for key in losses_reduced[0]:
losses_reduced_for_key = [x[key] for x in losses_reduced]
loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
return {}, skipped_iter, grad_norm, num_zeros_in_grad
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
loss_scale, report_memory_flag, skipped_iter,
grad_norm, params_norm, num_zeros_in_grad,
model=None, optimizer=None):
"""Log training information such as losses, timing, ...."""
args = get_args()
timers = get_timers()
writer = get_tensorboard_writer()
# Advanced, skipped, and Nan iterations.
advanced_iters_key = 'advanced iterations'
skipped_iters_key = 'skipped iterations'
nan_iters_key = 'nan iterations'
# Advanced iterations.
if not skipped_iter:
total_loss_dict[advanced_iters_key] = total_loss_dict.get(
advanced_iters_key, 0) + 1
else:
if advanced_iters_key not in total_loss_dict:
total_loss_dict[advanced_iters_key] = 0
# Skipped iterations.
total_loss_dict[skipped_iters_key] = total_loss_dict.get(
skipped_iters_key, 0) + skipped_iter
# Update losses and set nan iterations
got_nan = False
for key in loss_dict:
if not skipped_iter:
total_loss_dict[key] = total_loss_dict.get(
key, torch.FloatTensor([0.0])).to(get_current_device()) + loss_dict[key]
else:
value = loss_dict[key].float().sum().item()
is_nan = value == float('inf') or \
value == -float('inf') or \
value != value
got_nan = got_nan or is_nan
total_loss_dict[nan_iters_key] = total_loss_dict.get(
nan_iters_key, 0) + int(got_nan)
# Logging.
timers_to_log = []
def add_to_logging(name):
if name in timers.timers:
timers_to_log.append(name)
add_to_logging('forward-compute')
add_to_logging('forward-recv')
add_to_logging('forward-send')
add_to_logging('forward-backward-send-forward-backward-recv')
add_to_logging('backward-compute')
add_to_logging('backward-recv')
add_to_logging('backward-send')
add_to_logging('backward-send-forward-recv')
add_to_logging('backward-send-backward-recv')
add_to_logging('backward-params-all-reduce')
add_to_logging('backward-embedding-all-reduce')
add_to_logging('optimizer-copy-to-main-grad')
add_to_logging('optimizer-unscale-and-check-inf')
add_to_logging('optimizer-clip-main-grad')
add_to_logging('optimizer-copy-main-to-model-params')
add_to_logging('optimizer')
add_to_logging('batch-generator')
# Calculate batch size.
batch_size = args.micro_batch_size * args.data_parallel_size * \
get_num_microbatches()
total_iterations = total_loss_dict[advanced_iters_key] + \
total_loss_dict[skipped_iters_key]
# Tensorboard values.
if writer and (iteration % args.tensorboard_log_interval == 0) and \
is_last_rank():
writer.add_scalar('steps-vs-samples/y=steps,x=samples', iteration, args.consumed_train_samples)
writer.add_scalar('steps-vs-samples/y=samples,x=steps', args.consumed_train_samples, iteration)
writer.add_scalar('steps-vs-tokens/y=steps,x=tokens', iteration, args.consumed_train_tokens)
writer.add_scalar('steps-vs-tokens/y=tokens,x=steps', args.consumed_train_tokens, iteration)
if args.log_learning_rate_to_tensorboard:
writer.add_scalar('learning-rate/learning-rate', learning_rate, iteration)
writer.add_scalar('learning-rate/learning-rate vs samples', learning_rate,
args.consumed_train_samples)
writer.add_scalar('learning-rate/learning-rate vs tokens', learning_rate,
args.consumed_train_tokens)
writer.add_scalar('learning-rate', learning_rate, iteration)
writer.add_scalar('learning-rate vs samples', learning_rate,
args.consumed_train_samples)
if args.log_batch_size_to_tensorboard:
writer.add_scalar('batch-size/batch-size', batch_size, iteration)
writer.add_scalar('batch-size/batch-size vs samples', batch_size,
args.consumed_train_samples)
for key in loss_dict:
writer.add_scalar(f"lm-loss-training/{key}", loss_dict[key], iteration)
writer.add_scalar(f"lm-loss-training/{key}" + ' vs samples', loss_dict[key],
args.consumed_train_samples)
writer.add_scalar(f"lm-loss-training/{key}" + ' vs tokens', loss_dict[key],
args.consumed_train_tokens)
writer.add_scalar(key, loss_dict[key], iteration)
writer.add_scalar(key + ' vs samples', loss_dict[key],
args.consumed_train_samples)
writer.add_scalar(key + ' vs tokens', loss_dict[key],
args.consumed_train_tokens)
if args.log_loss_scale_to_tensorboard:
writer.add_scalar('loss-scale/loss-scale', loss_scale, iteration)
writer.add_scalar('loss-scale/loss-scale vs samples', loss_scale,
args.consumed_train_samples)
writer.add_scalar('loss-scale/loss-scale vs tokens', loss_scale,
args.consumed_train_tokens)
if grad_norm is not None:
writer.add_scalar('grad-norm/grad-norm', grad_norm, iteration)
writer.add_scalar('grad-norm/grad-norm vs samples', grad_norm,
args.consumed_train_samples)
writer.add_scalar('grad-norm/grad-norm vs tokens', grad_norm,
args.consumed_train_tokens)
writer.add_scalar('grad-norm', grad_norm, iteration)
writer.add_scalar('grad-norm vs samples', grad_norm,
args.consumed_train_samples)
if num_zeros_in_grad is not None:
writer.add_scalar('num-zeros/num-zeros', num_zeros_in_grad, iteration)
writer.add_scalar('num-zeros/num-zeros vs samples', num_zeros_in_grad,
args.consumed_train_samples)
writer.add_scalar('num-zeros/num-zeros vs tokens', num_zeros_in_grad,
args.consumed_train_tokens)
if params_norm is not None:
writer.add_scalar('params-norm/params-norm', params_norm, iteration)
writer.add_scalar('params-norm/params-norm vs samples', params_norm,
args.consumed_train_samples)
writer.add_scalar('params-norm/params-norm vs tokens', params_norm,
args.consumed_train_tokens)
if args.curriculum_learning:
writer.add_scalar('curriculum_seqlen', args.curriculum_seqlen,
iteration)
if args.log_timers_to_tensorboard:
timers.write(timers_to_log, writer, iteration,
normalizer=total_iterations)
if iteration % args.tensorboard_log_interval == 0:
# This logging write various optimizer states to tensorboard. This
# feature may consume extra GPU memory thus is set at false by default.
if args.log_optimizer_states_to_tensorboard and optimizer is not None:
opt_stats = [0.0] * 8
opt_stats_2 = [0.0] * 4
for _, group in enumerate(optimizer.param_groups):
for _, param in enumerate(group['params']):
opt_stats[0] += (torch.norm(optimizer.state[param]['exp_avg_sq']).item())**2
opt_stats[1] += (torch.norm(optimizer.state[param]['exp_avg_sq'].sqrt()).item())**2
opt_stats[2] += (torch.norm(optimizer.state[param]['exp_avg']).item())**2
opt_stats[3] += (torch.norm(param).item())**2
opt_stats[4] += torch.norm(optimizer.state[param]['exp_avg_sq'], p=1).item()
opt_stats[5] += torch.norm(optimizer.state[param]['exp_avg_sq'].sqrt(), p=1).item()
opt_stats[6] += torch.norm(optimizer.state[param]['exp_avg'], p=1).item()
opt_stats[7] += torch.norm(param, p=1).item()
opt_stats_2[0] = max(opt_stats_2[0], abs(optimizer.state[param]['exp_avg_sq'].max().item()), abs(
optimizer.state[param]['exp_avg_sq'].min().item()))
opt_stats_2[1] = max(opt_stats_2[1], optimizer.state[param]
['exp_avg_sq'].sqrt().abs_().max().item())
opt_stats_2[2] = max(opt_stats_2[2], abs(optimizer.state[param]['exp_avg'].max().item()), abs(
optimizer.state[param]['exp_avg'].min().item()))
opt_stats_2[3] = max(opt_stats_2[3], abs(param.max().item()), abs(param.min().item()))
# print('step {} rank {} before sync opt_stats {}, {}'.format(iteration, torch.distributed.get_rank(), opt_stats_2, opt_stats))
if args.zero_stage > 0:
# ZeRO partiions optimizer states
opt_stats = torch.FloatTensor(opt_stats).to(get_current_device())
torch.distributed.all_reduce(opt_stats, group=mpu.get_data_parallel_group())
opt_stats_2 = torch.FloatTensor(opt_stats_2).to(get_current_device())
torch.distributed.all_reduce(opt_stats_2, op=torch.distributed.ReduceOp.MAX,
group=mpu.get_data_parallel_group())
if args.tensor_model_parallel_size > 1:
opt_stats = torch.FloatTensor(opt_stats).to(get_current_device())
torch.distributed.all_reduce(
opt_stats, group=mpu.get_tensor_model_parallel_group())
opt_stats_2 = torch.FloatTensor(opt_stats_2).to(get_current_device(),)
torch.distributed.all_reduce(opt_stats_2, op=torch.distributed.ReduceOp.MAX,
group=mpu.get_tensor_model_parallel_group())
if args.pipeline_model_parallel_size > 1:
opt_stats = torch.FloatTensor(opt_stats).to(get_current_device())
torch.distributed.all_reduce(
opt_stats, group=mpu.get_pipeline_model_parallel_group())
opt_stats_2 = torch.FloatTensor(opt_stats_2).to(get_current_device())
torch.distributed.all_reduce(opt_stats_2, op=torch.distributed.ReduceOp.MAX,
group=mpu.get_pipeline_model_parallel_group())
# print('step {} rank {} after sync opt_stats {}, {}'.format(iteration, torch.distributed.get_rank(), opt_stats_2, opt_stats))
if writer and is_last_rank():
writer.add_scalar('optimizer/variance_l2 vs tokens', opt_stats[0]**0.5, args.consumed_train_tokens)
writer.add_scalar('optimizer/variance_sqrt_l2 vs tokens', opt_stats[1]**0.5, args.consumed_train_tokens)
writer.add_scalar('optimizer/momentum_l2 vs tokens', opt_stats[2]**0.5, args.consumed_train_tokens)
writer.add_scalar('optimizer/weight_l2 vs tokens', opt_stats[3]**0.5, args.consumed_train_tokens)
writer.add_scalar('optimizer/variance_l1 vs tokens', opt_stats[4], args.consumed_train_tokens)
writer.add_scalar('optimizer/variance_sqrt_l1 vs tokens', opt_stats[5], args.consumed_train_tokens)
writer.add_scalar('optimizer/momentum_l1 vs tokens', opt_stats[6], args.consumed_train_tokens)
writer.add_scalar('optimizer/weight_l1 vs tokens', opt_stats[7], args.consumed_train_tokens)
writer.add_scalar('optimizer/variance_abs_max vs tokens', opt_stats_2[0], args.consumed_train_tokens)
writer.add_scalar('optimizer/variance_sqrt_abs_max vs tokens',
opt_stats_2[1], args.consumed_train_tokens)
writer.add_scalar('optimizer/momentum_abs_max vs tokens', opt_stats_2[2], args.consumed_train_tokens)
writer.add_scalar('optimizer/weight_abs_max vs tokens', opt_stats_2[3], args.consumed_train_tokens)
writer.add_scalar('optimizer/variance_l2', opt_stats[0]**0.5, iteration)
writer.add_scalar('optimizer/variance_sqrt_l2', opt_stats[1]**0.5, iteration)
writer.add_scalar('optimizer/momentum_l2', opt_stats[2]**0.5, iteration)
writer.add_scalar('optimizer/weight_l2', opt_stats[3]**0.5, iteration)
writer.add_scalar('optimizer/variance_l1', opt_stats[4], iteration)
writer.add_scalar('optimizer/variance_sqrt_l1', opt_stats[5], iteration)
writer.add_scalar('optimizer/momentum_l1', opt_stats[6], iteration)
writer.add_scalar('optimizer/weight_l1', opt_stats[7], iteration)
writer.add_scalar('optimizer/variance_abs_max', opt_stats_2[0], iteration)
writer.add_scalar('optimizer/variance_sqrt_abs_max', opt_stats_2[1], iteration)
writer.add_scalar('optimizer/momentum_abs_max', opt_stats_2[2], iteration)
writer.add_scalar('optimizer/weight_abs_max', opt_stats_2[3], iteration)
if iteration % args.log_interval == 0:
elapsed_time = timers('interval-time').elapsed()
elapsed_time_per_iteration = elapsed_time / total_iterations
seq_len = args.curriculum_seqlen if args.curriculum_learning else args.seq_length
hidden_size = args.hidden_size
num_layers = args.num_layers
vocab_size = args.padded_vocab_size
samples_per_sec, tflops, approx_parameters_in_billions = throughput_calculator(
model, args, elapsed_time, total_iterations)
# Compute throughput.
samples_per_sec_per_replica = samples_per_sec / args.data_parallel_size
tokens_per_sec = samples_per_sec * seq_len
tokens_per_sec_per_replica = tokens_per_sec / args.data_parallel_size
# only the last rank process has a non-None _GLOBAL_TENSORBOARD_WRITER
if writer and is_last_rank():
if args.log_timers_to_tensorboard:
writer.add_scalar('iteration-time/iteration-time',
elapsed_time_per_iteration, iteration)
writer.add_scalar('iteration-time/iteration-time vs samples',
elapsed_time_per_iteration, args.consumed_train_samples)
writer.add_scalar('iteration-time/iteration-time vs tokens',
elapsed_time_per_iteration, args.consumed_train_tokens)
log_string = ' iteration {:8d}/{:8d} |'.format(
iteration, args.train_iters)
log_string += ' consumed samples: {:12d} |'.format(
args.consumed_train_samples)
log_string += ' consumed tokens: {:12d} |'.format(
args.consumed_train_tokens)
log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
elapsed_time_per_iteration * 1000.0)
log_string += ' learning rate: {:.3E} |'.format(learning_rate)
log_string += ' global batch size: {:5d} |'.format(batch_size)
for key in total_loss_dict:
if key not in [advanced_iters_key, skipped_iters_key,
nan_iters_key]:
avg = total_loss_dict[key].item() / \
float(max(1, total_loss_dict[advanced_iters_key]))
if avg > 0.0:
log_string += ' {}: {:.6E} |'.format(key, avg)
total_loss_dict[key] = torch.FloatTensor([0.0]).to(get_current_device())
log_string += ' loss scale: {:.1f} |'.format(loss_scale)
if grad_norm is not None:
log_string += ' grad norm: {:.3f} |'.format(grad_norm)
if num_zeros_in_grad is not None:
log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
if params_norm is not None:
log_string += ' params norm: {:.3f} |'.format(params_norm)
if args.curriculum_learning:
log_string += ' curriculum seqlen: {:5d} |'.format(args.curriculum_seqlen)
log_string += ' number of skipped iterations: {:3d} |'.format(
total_loss_dict[skipped_iters_key])
log_string += ' number of nan iterations: {:3d} |'.format(
total_loss_dict[nan_iters_key])
log_string += ' samples per second: {:.3f} |'.format(samples_per_sec)
log_string += ' TFLOPs: {:.2f} |'.format(tflops)
total_loss_dict[advanced_iters_key] = 0
total_loss_dict[skipped_iters_key] = 0
total_loss_dict[nan_iters_key] = 0
print_rank_last(log_string)
if report_memory_flag and learning_rate > 0.:
# Report memory after optimizer state has been initialized.
report_memory('(after {} iterations)'.format(iteration))
report_memory_flag = False
timers.log(timers_to_log, normalizer=args.log_interval)
return report_memory_flag
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
timers = get_timers()
# Extra barrier is added to make sure
# all ranks report the max time.
torch.distributed.barrier()
timers('save-checkpoint').start()
save_checkpoint(iteration, model, optimizer, lr_scheduler)
torch.distributed.barrier()
timers('save-checkpoint').stop()
checkpoint_throughput_calculator(model, timers('save-checkpoint').elapsed(reset=False))
timers.log(['save-checkpoint'])
def train(forward_step_func, model, optimizer, lr_scheduler,
train_data_iterator, valid_data_iterator, teacher_model=None, mllogger=None):
"""Train the model function."""
args = get_args()
timers = get_timers()
# Write args to tensorboard
write_args_to_tensorboard()
setup_profiler(args, get_current_device())
# Turn on training mode which enables dropout.
for model_module in model:
model_module.train()
# Tracking loss.
total_loss_dict = {}
# Used to control the evaluation frequency
first_iter = args.iteration
# Iterations.
iteration = args.iteration
timers('interval-time').start()
print_datetime('before the start of training step')
report_memory_flag = True
# CLearML init:
if args.clearml_config_path != None and is_last_rank():
if not os.path.exists(args.clearml_config_path):
raise Exception(f"Could not access {args.clearml_config_path}")
if args.clearml_exp_name != None:
exp_name = args.clearml_exp_name
else:
exp_name = time.strftime("%Y_%m_%d_%H_%M")
os.environ["CLEARML_CONFIG_FILE"] = args.clearml_config_path
from clearml import Task
task = Task.get_task(project_name="Megatron-DeepSpeed", task_name=args.clearml_exp_name)
if args.clearml_continue_exp:
clearml_task = Task.init("Megatron-DeepSpeed", exp_name, continue_last_task=task.task_id)
else:
clearml_task = Task.init("Megatron-DeepSpeed", exp_name)
if args.tensor_logger_max_iter > 0:
from deepspeed.tools.tensor_logger import TensorLogger, save_logged_tensors
tensor_logger = TensorLogger(model[0].module,
log_activations_enabled=args.log_fwd_activations,
max_iterations=args.tensor_logger_max_iter,
log_grads_enabled=args.log_bwd_grads,
log_inputs_enabled=args.log_model_inputs,
prefix=None)
else:
tensor_logger = None
while iteration < args.train_iters and (args.train_tokens is None or
args.consumed_train_tokens < args.train_tokens):
trigger(on_step_begin)
update_num_microbatches(args.consumed_train_samples)
if args.deepspeed:
# inform deepspeed of any batch size changes
global_batch_size = mpu.get_data_parallel_world_size() * \
args.micro_batch_size * \
get_num_microbatches()
model[0].set_train_batch_size(global_batch_size)
if args.curriculum_learning and not args.no_pipeline_parallel:
args.curriculum_seqlen = args.curriculum_scheduler.update_difficulty(
args.iteration + 1)
with tensor_logger.log_iteration(iteration) if tensor_logger else nullcontext():
loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
train_step(forward_step_func,
train_data_iterator,
model,
optimizer,
lr_scheduler,
teacher_model=teacher_model)
iteration += 1
args.iteration = iteration
new_samples = mpu.get_data_parallel_world_size() * \
args.micro_batch_size * \
get_num_microbatches()
args.consumed_train_samples += new_samples
if args.curriculum_learning:
args.consumed_train_tokens += new_samples * args.curriculum_seqlen
else:
args.consumed_train_tokens += new_samples * args.seq_length
# Logging.
loss_scale = 0
if args.fp16:
if args.deepspeed:
loss_scale = model[0].optimizer.cur_scale
else:
loss_scale = optimizer.get_loss_scale().item()
params_norm = None
if args.log_params_norm:
params_norm = calc_params_l2_norm(model)
report_memory_flag = training_log(loss_dict, total_loss_dict,
optimizer.param_groups[0]['lr'],
iteration, loss_scale,
report_memory_flag, skipped_iter,
grad_norm, params_norm, num_zeros_in_grad,
model, optimizer)
# Autoresume
if args.adlr_autoresume and \
(iteration % args.adlr_autoresume_interval == 0):
check_adlr_autoresume_termination(iteration, model, optimizer,
lr_scheduler)
# Evaluation
if args.eval_interval and (iteration - first_iter) % args.eval_interval == 0 and \
args.do_valid:
prefix = 'iteration {}'.format(iteration)
eval_loss = evaluate_and_print_results(prefix, forward_step_func,
valid_data_iterator, model,
iteration, False, mllogger=mllogger)
# Exiting based on eval loss
if args.eval_loss_exit_value is not None and eval_loss <= args.eval_loss_exit_value:
if args.save:
save_checkpoint_and_time(iteration, model, optimizer,
lr_scheduler)
torch.distributed.barrier()
print_datetime(f"Reached target loss value: {args.eval_loss_exit_value}. "
f"Stopping the training at iteration: {iteration} with loss: {eval_loss}")
if mllogger is not None:
mllogger.event(key=mllogger.constants.TRAIN_SAMPLES,
value=(args.consumed_train_samples - args.ext_lr_steps)
* args.seq_length, sync=False)
mllogger.end(key=mllogger.constants.BLOCK_STOP,
metadata={'first_epoch_num': 0},
sync=False)
mllogger.end(key=mllogger.constants.EPOCH_STOP,
metadata={'epoch_num': (args.consumed_train_samples - args.ext_lr_steps)
* args.seq_length}, sync=False)
status = 'success'
mllogger.log_run_stop(status)
sys.exit()
# Checkpointing
saved_checkpoint = False
if args.save and args.save_interval and \
iteration % args.save_interval == 0:
save_checkpoint_and_time(iteration, model, optimizer,
lr_scheduler)
saved_checkpoint = True
# Exiting based on duration
if args.exit_duration_in_mins:
train_time = (time.time() - _TRAIN_START_TIME) / 60.0
done_cuda = torch.IntTensor(
[train_time > args.exit_duration_in_mins]).to(get_current_device())
torch.distributed.all_reduce(
done_cuda, op=torch.distributed.ReduceOp.MAX)
done = done_cuda.item()
if done:
status = 'fail'
if mllogger is not None:
mllogger.log_run_stop(status)
mllogger.event(key=mllogger.constants.TRAIN_SAMPLES,
value=(args.consumed_train_samples - args.ext_lr_steps) * args.seq_length,
sync=False)
if args.save and not saved_checkpoint:
save_checkpoint_and_time(iteration, model, optimizer,
lr_scheduler)
print_datetime('exiting program after {} minutes'.format(train_time))
sys.exit()
# Exiting based on iterations
if args.exit_interval and iteration % args.exit_interval == 0:
if args.save and not saved_checkpoint:
save_checkpoint_and_time(iteration, model, optimizer,
lr_scheduler)
torch.distributed.barrier()
print_datetime('exiting program at iteration {}'.format(iteration))
sys.exit()
# Exiting based on kill-switch
if found_kill_switch():
if args.save and not saved_checkpoint:
save_checkpoint_and_time(iteration, model, optimizer,
lr_scheduler)
print_datetime(f"Detected kill switch at {args.kill_switch_path}, "
f"iteration={iteration}. Exiting")
sys.exit()
if args.tensor_logger_max_iter > 0:
save_logged_tensors(tensor_logger, args.tensor_logger_path, args.rank, iteration)
trigger(on_step_end)
return iteration
def evaluate(forward_step_func, data_iterator, model, verbose=False):
"""Evaluation."""
args = get_args()
# Turn on evaluation mode which disables dropout.
for model_module in model:
model_module.eval()
if args.curriculum_learning and not args.no_pipeline_parallel:
# When curriculum learning is used with pipeline parallelism, we need
# this logic to ensure that the eval data is not truncated. If there
# is a seqlen change due to that, we need to call
# reset_activation_shape() to reset some buffers in deepspeed pipeline
# engine.
if args.curriculum_seqlen < args.seq_length:
args.curriculum_seqlen = args.seq_length
model[0].reset_activation_shape()
if args.eval_micro_batch_size != args.micro_batch_size:
reset_cached_broadcast_sizes()
model[0].reset_activation_shape()
total_loss_dict = {}
with torch.no_grad():
iteration = 0
total_iterations = args.eval_iters
if args.eval_iters == -1:
print_rank_0(F"Evaluation on the entire set as eval-iters is set to {args.eval_iters}")
samples_per_iteration = mpu.get_data_parallel_world_size() \
* args.eval_micro_batch_size \
* get_num_eval_microbatches()
total_iterations = math.ceil(args.eval_total_samples / samples_per_iteration)
print_rank_0(
F"Evaluation Iterations: {total_iterations}, Total Eval Samples: {args.eval_total_samples}, samples per iteration: {samples_per_iteration}")
args.consumed_valid_samples = 0
num_eval_microbatches = get_num_eval_microbatches()
while iteration < total_iterations:
iteration += 1
if iteration == total_iterations and args.eval_iters == -1:
num_eval_microbatches = math.ceil((args.eval_total_samples - args.consumed_valid_samples) /
(mpu.get_data_parallel_world_size() * args.eval_micro_batch_size))
if verbose and iteration % args.log_interval == 0:
print_rank_0('Evaluating iter {}/{}'.format(iteration,
total_iterations))
if mpu.get_pipeline_model_parallel_world_size() > 1:
if args.virtual_pipeline_model_parallel_size is not None:
forward_backward_func = forward_backward_pipelining_with_interleaving
else:
forward_backward_func = forward_backward_pipelining_without_interleaving
else:
forward_backward_func = forward_backward_no_pipelining
if args.deepspeed and args.ds_pipeline_enabled:
# DeepSpeed uses eval_batch() and already aggregates losses.
assert isinstance(model, list) and len(model) == 1
loss = model[0].eval_batch(data_iterator, bcast_loss=False, eval_micro_batches=num_eval_microbatches)
loss_dicts = [{'lm loss': loss}] * num_eval_microbatches
else:
assert args.micro_batch_size == args.eval_micro_batch_size, \
"evaluate (training) - Megatron's forward_backward_func options - " \
"Unsupported for split micro batch size"
loss_dicts = forward_backward_func(
forward_step_func, data_iterator, model, optimizer=None,
timers=None, forward_only=True)
if mpu.is_pipeline_last_stage(ignore_virtual=True):
# Reduce across processes.
for loss_dict in loss_dicts:
for key in loss_dict:
if 'moe' not in key:
total_loss_dict[key] = total_loss_dict.get(
key, torch.FloatTensor([0.0])).to(get_current_device()) + loss_dict[key]
if not args.device_warmup:
args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
* args.eval_micro_batch_size \
* num_eval_microbatches
# Move model back to the train mode.
for model_module in model:
model_module.train()
for key in total_loss_dict:
total_loss_dict[key] /= ((total_iterations - 1) * get_num_eval_microbatches()) + num_eval_microbatches
if args.curriculum_learning and not args.no_pipeline_parallel:
# roll back to actual curriculum seqlen at the end of eval.
args.curriculum_seqlen = args.curriculum_scheduler.update_difficulty(
args.iteration + 1)
if args.curriculum_seqlen < args.seq_length:
model[0].reset_activation_shape()
if args.eval_micro_batch_size != args.micro_batch_size:
reset_cached_broadcast_sizes()
model[0].reset_activation_shape()
return total_loss_dict
def warmup(args, forward_step_func, warmup_train_iterator, warmup_valid_iterator, model, optimizer, lr_scheduler,
teacher_model, prefix, iteration, mllogger):
# save fp8 modules state:
import copy
saved_fp8_modules = []
if args.use_hpu_fp8_transformer_engine:
base_model = model[0].module
for layer in base_model.modules():
if isinstance(layer, ColumnParallelLinear) or isinstance(layer, RowParallelLinear):
copied_fp8_module = copy.deepcopy(layer.output_parallel_linear)
saved_fp8_modules.append(copied_fp8_module)
for _ in range(args.device_warmup_iterations):
train_step(forward_step_func,
warmup_train_iterator,
model,
optimizer,
lr_scheduler,
teacher_model=teacher_model)
evaluate_and_print_results(prefix, forward_step_func,
warmup_valid_iterator, model,
iteration, False, mllogger=mllogger)
htcore.mark_step()
# load fp8 modules states
if args.use_hpu_fp8_transformer_engine:
base_model = model[0].module
for layer in base_model.modules():
if isinstance(layer, ColumnParallelLinear) or isinstance(layer, RowParallelLinear):
layer.output_parallel_linear = saved_fp8_modules.pop(0)
lr_scheduler.num_steps = 0
model[0].global_steps = 0
model[0].global_samples = 0
htcore.mark_step()
if args.load:
print(f'Load model weights after the warmup')
torch.distributed.barrier()
args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
torch.distributed.barrier()
if teacher_model is not None:
print(f'Load teacher model weights after the warmup')
torch.distributed.barrier()
load_checkpoint(teacher_model, strict=False)
torch.distributed.barrier()
if args.deepspeed and args.universal_checkpoint:
sync_hp_to_lp(optimizer)
args.device_warmup = False
def evaluate_and_print_results(prefix, forward_step_func,
data_iterator, model,
iteration, verbose=False, mllogger=None):
"""Helper function to evaluate and dump results on screen."""
print_rank_last(f"{datetime.now().strftime('%Y-%m-%d %H:%M:%S')} Start last rank evaluation")
args = get_args()
if not args.device_warmup and mllogger is not None:
writer = get_tensorboard_writer()
mllogger.start(key=mllogger.constants.EVAL_START,
metadata={'epoch_num': (args.consumed_train_samples - args.ext_lr_steps) * args.seq_length},
sync=False)
total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
string = ' validation loss at {} | '.format(prefix)
eval_loss = 0
if args.device_warmup:
return eval_loss
for key in total_loss_dict:
eval_loss = total_loss_dict[key].item()
string += '{} value: {:.6E} | '.format(key, eval_loss)
ppl = math.exp(min(20, eval_loss))
string += '{} PPL: {:.6E} | '.format(key, ppl)
if writer and is_last_rank():
writer.add_scalar(f'lm-loss-validation/{key} validation',
eval_loss,
iteration)
writer.add_scalar(f"lm loss validation",
eval_loss,
iteration)
writer.add_scalar(f'lm-loss-validation/{key} validation vs samples',
eval_loss,
args.consumed_train_samples)
writer.add_scalar(f'lm-loss-validation/{key} validation vs tokens',
eval_loss,
args.consumed_train_tokens)
if args.log_validation_ppl_to_tensorboard:
writer.add_scalar(f'lm-loss-validation/{key} validation ppl', ppl,
iteration)
writer.add_scalar(f'lm-loss-validation/{key} validation ppl vs samples',
ppl, args.consumed_train_samples)
writer.add_scalar(f'lm-loss-validation/{key} validation ppl vs tokens',
ppl, args.consumed_train_tokens)
string = f" {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} |{string}"
length = len(string) + 1
print_rank_last('-' * length)
print_rank_last(string)
print_rank_last('-' * length)
eval_loss_tensor = torch.FloatTensor([eval_loss]).to(get_current_device())
torch.distributed.all_reduce(eval_loss_tensor, op=torch.distributed.ReduceOp.MAX)
eval_loss = eval_loss_tensor.item()
if not args.device_warmup and mllogger is not None:
mllogger.event(mllogger.constants.EVAL_ACCURACY, value=eval_loss,
metadata=dict(epoch_num=(args.consumed_train_samples - args.ext_lr_steps) * args.seq_length),
sync=False)
mllogger.end(key=mllogger.constants.EVAL_STOP,
metadata=dict(epoch_num=(args.consumed_train_samples - args.ext_lr_steps) * args.seq_length),
sync=False)
return eval_loss
def cyclic_iter(iter):
while True:
for x in iter:
yield x
def build_warmup_iterators():
args = get_args()
warmup_samples = args.global_batch_size
warmup_num_samples = [warmup_samples, 0, 0]
warmup_train_data_ratio = 1.0
warmup_ds = build_train_valid_test_datasets(
data_prefix=None,
train_data_prefix=[warmup_train_data_ratio, args.warmup_dataset_path],
valid_data_prefix=None,
test_data_prefix=None,
data_impl=args.data_impl,
splits_string='100, 0, 0',
train_valid_test_num_samples=warmup_num_samples,
seq_length=args.seq_length,
seed=args.seed,
skip_warmup=(not args.mmap_warmup),
use_seq_len_plus_one_tokens=args.use_seq_len_plus_one_tokens)[0]
warmup_train_dataloader = build_pretraining_data_loader(
warmup_ds, 0, True)
warmup_valid_dataloader = build_pretraining_data_loader(
warmup_ds, 0, False)
args.eval_total_samples = warmup_samples
return iter(cyclic_iter(warmup_train_dataloader)), iter(cyclic_iter(warmup_valid_dataloader))
def build_train_valid_test_data_iterators(
build_train_valid_test_datasets_provider):
"""XXX"""
args = get_args()
(train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)
print_rank_0('> building train, validation, and test datasets ...')
# Backward compatibility, assume fixed batch size.
if args.iteration > 0 and args.consumed_train_samples == 0:
assert args.train_samples is None, \
'only backward compatiblity support for iteration-based training'
args.consumed_train_samples = args.iteration * args.global_batch_size
if args.iteration > 0 and args.consumed_valid_samples == 0:
if args.train_samples is None:
args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
args.eval_iters * args.global_batch_size
# Data loader only on rank 0 of each model parallel group.
if mpu.get_tensor_model_parallel_rank() == 0:
# Number of train/valid/test samples.
if args.train_samples:
train_samples = args.train_samples
else:
train_samples = args.train_iters * args.global_batch_size
eval_iters = (args.train_iters // args.eval_interval + 1) * \
args.eval_iters
test_iters = args.eval_iters
if args.eval_iters == -1:
print_rank_0("Evaluation iterations are set to -1")
train_val_test_num_samples = [train_samples, -1, -1]
else:
train_val_test_num_samples = [train_samples,
eval_iters * args.global_batch_size,
test_iters * args.global_batch_size]
print_rank_0(' > datasets target sizes (minimum size):')
print_rank_0(' train: {}'.format(train_val_test_num_samples[0]))
print_rank_0(' validation: {}'.format(train_val_test_num_samples[1]))
print_rank_0(' test: {}'.format(train_val_test_num_samples[2]))
# Build the datasets.
train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
train_val_test_num_samples)
if args.eval_iters == -1:
eval_total_samples = len(valid_ds)
consumed_valid_samples = 0
use_all_eval_samples = True
else:
eval_total_samples = 0
consumed_valid_samples = args.consumed_valid_samples
use_all_eval_samples = False
# Build dataloders.
train_dataloader = build_pretraining_data_loader(
train_ds, args.consumed_train_samples, True)
valid_dataloader = build_pretraining_data_loader(
valid_ds, consumed_valid_samples, False, use_all_eval_samples)
test_dataloader = build_pretraining_data_loader(test_ds, 0, False)
# Flags to know if we need to do training/validation/testing.
do_train = train_dataloader is not None and args.train_iters > 0 \
and not args.skip_train
do_valid = valid_dataloader is not None and (args.eval_iters > 0 or args.eval_iters == -1)
do_test = test_dataloader is not None and args.eval_iters > 0
# Need to broadcast num_tokens and num_type_tokens.
flags = torch.IntTensor(
[int(do_train), int(do_valid), int(do_test), int(eval_total_samples)]).to(get_current_device())
else:
flags = torch.IntTensor([0, 0, 0, 0]).to(get_current_device())
# Broadcast num tokens.
torch.distributed.broadcast(flags,
mpu.get_tensor_model_parallel_src_rank(),
group=mpu.get_tensor_model_parallel_group())
args.do_train = flags[0].item()
args.do_valid = flags[1].item()
args.do_test = flags[2].item()
args.eval_total_samples = flags[3].item()
# Build iterators.
dl_type = args.dataloader_type
assert dl_type in ['single', 'cyclic']
if train_dataloader is not None:
train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
else iter(cyclic_iter(train_dataloader))
else:
train_data_iterator = None
if valid_dataloader is not None:
valid_data_iterator = iter(valid_dataloader) if (dl_type == 'single' and args.eval_iters != -1) \
else iter(cyclic_iter(valid_dataloader))
else:
valid_data_iterator = None
if test_dataloader is not None:
test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
else iter(cyclic_iter(test_dataloader))
else:
test_data_iterator = None
return train_data_iterator, valid_data_iterator, test_data_iterator