peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Model-References
/MLPERF3.1
/Training
/benchmarks
/gpt3
/pretrain_ict.py
# coding=utf-8 | |
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Pretrain BERT for Inverse Cloze Task""" | |
import math | |
import torch | |
import torch.distributed as dist | |
import torch.nn.functional as F | |
from megatron import get_args | |
from megatron import print_rank_0 | |
from megatron import get_timers | |
from megatron import mpu | |
from megatron.data.biencoder_dataset_utils import get_ict_batch | |
from megatron.data.dataset_utils import build_train_valid_test_datasets | |
from megatron.model.biencoder_model import biencoder_model_provider | |
from megatron.training import pretrain | |
from megatron.utils import average_losses_across_data_parallel_group | |
def pretrain_ict_model_provider(): | |
args = get_args() | |
model = biencoder_model_provider( | |
only_context_model=False, | |
only_query_model=False, | |
biencoder_shared_query_context_model=\ | |
args.biencoder_shared_query_context_model) | |
return model | |
def get_group_world_size_rank(): | |
group = mpu.get_data_parallel_group() | |
rank = torch.distributed.get_rank(group=group) | |
world_size = torch.distributed.get_world_size(group=group) | |
return group, rank, world_size | |
class AllgatherFromDataParallelRegion(torch.autograd.Function): | |
def forward(ctx, input_): | |
assert input_.dim() == 2 | |
group, rank, world_size = get_group_world_size_rank() | |
tensor_list = [torch.empty_like(input_) for _ in range(world_size)] | |
tensor_list[rank] = input_ | |
torch.distributed.all_gather(tensor_list, input_, group=group) | |
output = torch.cat(tensor_list, dim=0).contiguous() | |
return output | |
def backward(ctx, grad_output): | |
group, rank, world_size = get_group_world_size_rank() | |
assert grad_output.shape[0] % world_size == 0 | |
dim_size = grad_output.shape[0] // world_size | |
output_list = torch.split(grad_output, dim_size, dim=0) | |
# get chunk from this rank | |
output = output_list[rank].contiguous() | |
return output | |
def forward_step(data_iterator, model, input_tensor): | |
"""Forward step.""" | |
args = get_args() | |
timers = get_timers() | |
# Get the batch. | |
timers('batch-generator').start() | |
query_tokens, query_mask, \ | |
context_tokens, context_mask, context_indices = get_ict_batch(data_iterator) | |
timers('batch-generator').stop() | |
# Query and Context Types | |
query_types = torch.cuda.LongTensor(*query_tokens.shape).fill_(0) | |
context_types = torch.cuda.LongTensor(*context_tokens.shape).fill_(0) | |
# Forward model. | |
query_logits, context_logits = model(query_tokens, query_mask, | |
query_types, context_tokens, | |
context_mask, context_types) | |
micro_batch_size = query_logits.shape[0] | |
# recall we assert that tensor_model_parallel_size == 1 | |
assert mpu.get_tensor_model_parallel_world_size() == 1, \ | |
"Model parallel size > 1 not supported for ICT" | |
global_batch_size = dist.get_world_size() * micro_batch_size | |
all_query_logits = AllgatherFromDataParallelRegion.apply(query_logits) | |
all_context_logits = AllgatherFromDataParallelRegion.apply(context_logits) | |
# scores are inner products between query and context embeddings | |
retrieval_scores = torch.matmul(all_query_logits, | |
torch.transpose(all_context_logits, 0, 1)) | |
# scaling the retriever scores | |
if args.retriever_score_scaling: | |
retrieval_scores = retrieval_scores / math.sqrt(args.hidden_size) | |
softmax_scores = F.log_softmax(retrieval_scores, dim=1) | |
sorted_vals, sorted_indices = torch.topk(softmax_scores, | |
k=softmax_scores.shape[1], sorted=True) | |
def topk_accuracy(k): | |
return torch.cuda.FloatTensor([sum([int(i in sorted_indices[i, :k]) \ | |
for i in range(global_batch_size)]) / global_batch_size]) | |
topk_accs = [topk_accuracy(int(k)) for k in args.retriever_report_topk_accuracies] | |
labels = torch.arange(global_batch_size).long().cuda() | |
loss = F.nll_loss(softmax_scores, labels, reduction='mean') | |
reduced_losses = average_losses_across_data_parallel_group([loss, *topk_accs]) | |
# Scale the retrieval loss | |
loss = loss * mpu.get_data_parallel_world_size() | |
# create stats_dict with retrieval loss and all specified top-k accuracies | |
topk_acc_dict = {'top{}_acc'.format(k): v * 100 for k, v in \ | |
zip(args.retriever_report_topk_accuracies, reduced_losses[1:])} | |
stats_dict = dict(loss=reduced_losses[0], **topk_acc_dict) | |
return loss, stats_dict | |
def train_valid_test_datasets_provider(train_val_test_num_samples): | |
"""Build train, valid and test datasets.""" | |
args = get_args() | |
print_rank_0('> building train, validation, and test datasets ' | |
'for BERT ICT...') | |
train_ds, valid_ds, test_ds = build_train_valid_test_datasets( | |
data_prefix=args.data_path, | |
data_impl=args.data_impl, | |
splits_string=args.split, | |
train_valid_test_num_samples=train_val_test_num_samples, | |
max_seq_length=args.seq_length, | |
masked_lm_prob=args.mask_prob, | |
short_seq_prob=args.short_seq_prob, | |
seed=args.seed, | |
skip_warmup=(not args.mmap_warmup), | |
binary_head=False, | |
dataset_type='ict') | |
print_rank_0("> finished creating BERT ICT datasets ...") | |
return train_ds, valid_ds, test_ds | |
if __name__ == "__main__": | |
pretrain(train_valid_test_datasets_provider, | |
pretrain_ict_model_provider, | |
forward_step, | |
args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'}) | |