peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Model-References
/MLPERF3.1
/Training
/benchmarks
/gpt3
/pretrain_t5.py
# coding=utf-8 | |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Pretrain T5""" | |
from functools import partial | |
import torch | |
from megatron import ( | |
get_args, | |
get_timers, | |
mpu, | |
print_rank_0 | |
) | |
from megatron.data.dataset_utils import build_train_valid_test_datasets | |
from megatron.model import T5Model | |
from megatron.training import pretrain | |
from megatron.utils import average_losses_across_data_parallel_group | |
def model_provider(pre_process=True, post_process=True): | |
"""Build the model.""" | |
assert pre_process and post_process, "T5 doesn't yet support pipelining" | |
print_rank_0('building T5 model ...') | |
model = T5Model(num_tokentypes=0, | |
parallel_output=True) | |
return model | |
def get_batch(data_iterator): | |
"""Build the batch.""" | |
keys = ['text_enc', 'text_dec', 'labels', 'loss_mask', | |
'enc_mask', 'dec_mask', 'enc_dec_mask'] | |
datatype = torch.int64 | |
# Broadcast data. | |
if data_iterator is not None: | |
data = next(data_iterator) | |
else: | |
data = None | |
data_b = mpu.broadcast_data(keys, data, datatype) | |
# Unpack. | |
tokens_enc = data_b['text_enc'].long() | |
tokens_dec = data_b['text_dec'].long() | |
labels = data_b['labels'].long() | |
loss_mask = data_b['loss_mask'].float() | |
enc_mask = (data_b['enc_mask'] < 0.5) | |
dec_mask = (data_b['dec_mask'] < 0.5) | |
enc_dec_mask = (data_b['enc_dec_mask'] < 0.5) | |
return tokens_enc, tokens_dec, loss_mask, labels, \ | |
enc_mask, dec_mask, enc_dec_mask | |
def loss_func(loss_mask, output_tensor): | |
lm_loss_, _ = output_tensor | |
lm_loss_ = lm_loss_.float() | |
lm_loss = torch.sum( | |
lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum() | |
loss = lm_loss | |
averaged_losses = average_losses_across_data_parallel_group([lm_loss]) | |
return loss, {'lm loss': averaged_losses[0]} | |
def forward_step(data_iterator, model): | |
"""Forward step.""" | |
args = get_args() | |
timers = get_timers() | |
# Get the batch. | |
timers('batch generator').start() | |
tokens_enc, tokens_dec, loss_mask, lm_labels, enc_mask, dec_mask, enc_dec_mask \ | |
= get_batch(data_iterator) | |
timers('batch generator').stop() | |
# Forward model lm_labels | |
output_tensor = model(tokens_enc, | |
tokens_dec, | |
enc_mask, | |
dec_mask, | |
enc_dec_mask, | |
tokentype_ids=None, | |
lm_labels=lm_labels) | |
return output_tensor, partial(loss_func, loss_mask) | |
def train_valid_test_datasets_provider(train_val_test_num_samples): | |
"""Build train, valid, and test datasets.""" | |
args = get_args() | |
print_rank_0('> building train, validation, and test datasets ' | |
'for T5 ...') | |
train_ds, valid_ds, test_ds = build_train_valid_test_datasets( | |
data_prefix=args.data_path, | |
data_impl=args.data_impl, | |
splits_string=args.split, | |
train_valid_test_num_samples=train_val_test_num_samples, | |
max_seq_length=args.encoder_seq_length, | |
max_seq_length_dec=args.decoder_seq_length, | |
masked_lm_prob=args.mask_prob, | |
short_seq_prob=args.short_seq_prob, | |
seed=args.seed, | |
skip_warmup=(not args.mmap_warmup), | |
dataset_type='t5') | |
print_rank_0("> finished creating T5 datasets ...") | |
return train_ds, valid_ds, test_ds | |
if __name__ == "__main__": | |
pretrain(train_valid_test_datasets_provider, model_provider, forward_step, | |
args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'}) | |