peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Model-References
/MLPERF3.1
/Training
/benchmarks
/gpt3
/pretrain_vit.py
# coding=utf-8 | |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Pretrain VIT""" | |
import torch | |
import torch.nn.functional as F | |
from megatron import get_args, get_timers, mpu, print_rank_0 | |
from megatron.data.vit_dataset import build_train_valid_datasets | |
from megatron.model.vit_model import VitModel | |
from megatron.training import pretrain | |
from megatron.utils import average_losses_across_data_parallel_group | |
def model_provider(): | |
"""Build the model.""" | |
print_rank_0("building VIT model ...") | |
args = get_args() | |
model = VitModel(num_classes=args.num_classes) | |
return model | |
def get_batch(data_iterator): | |
"""Build the batch.""" | |
data = next(data_iterator) | |
# only data parallelism; no need for broadcast | |
images = data[0].cuda() | |
labels = data[1].cuda() | |
return images, labels | |
def forward_step(data_iterator, model, input_tensor): | |
"""Forward step.""" | |
timers = get_timers() | |
assert input_tensor is None | |
# Get the batch. | |
timers("batch-generator").start() | |
( | |
images, | |
labels, | |
) = get_batch(data_iterator) | |
timers("batch-generator").stop() | |
# Forward model. lm_labels | |
logits = model(images).contiguous().float() | |
loss = F.cross_entropy(logits, labels) | |
outputs = torch.argmax(logits, -1) | |
correct = (outputs == labels).float() | |
accuracy = torch.mean(correct) | |
averaged_loss = average_losses_across_data_parallel_group([loss, accuracy]) | |
return loss, {"loss": averaged_loss[0], "accuracy": averaged_loss[1]} | |
def train_valid_test_datasets_provider(train_val_test_num_samples): | |
"""Build train, valid, and test datasets.""" | |
args = get_args() | |
print_rank_0( | |
"> building train, validation, and test datasets " "for VIT ..." | |
) | |
train_ds, valid_ds = build_train_valid_datasets(data_path=args.data_path) | |
print_rank_0("> finished creating VIT datasets ...") | |
return train_ds, valid_ds, None | |
if __name__ == "__main__": | |
pretrain( | |
train_valid_test_datasets_provider, | |
model_provider, | |
forward_step, | |
args_defaults={'dataloader_type': 'cyclic'} | |
) | |