peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Model-References
/MLPERF3.1
/Training
/benchmarks
/gpt3
/tasks
/detok.py
import os | |
import sys | |
import torch | |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), | |
os.path.pardir))) | |
from tqdm import tqdm | |
from megatron import get_args | |
from megatron import get_tokenizer | |
from megatron.initialize import initialize_megatron | |
from pretrain_gpt import train_valid_test_datasets_provider | |
from megatron.training import build_train_valid_test_data_iterators | |
def get_detok_args(parser): | |
group = parser.add_argument_group(title='detokenizer') | |
group.add_argument('--detokenizer_output', | |
type=str, | |
required=True, | |
help='detokenizer output path') | |
return parser | |
def process_split(split, dataset, out_path): | |
print(f'Processing {split}') | |
tokenizer = get_tokenizer() | |
full_text = [] | |
for batch in tqdm(dataset, total=len(dataset)): | |
tokens = batch['text'].reshape(-1).tolist() | |
text = tokenizer.detokenize(tokens) | |
full_text.append(text) | |
out_name = os.path.join(out_path, f'{split}.text') | |
print(f'Writing to {out_name}') | |
with open(out_name, 'w') as f: | |
f.writelines(full_text) | |
def main(): | |
# below arguments are to force the full dataset according to the | |
# train/valid/test split based on args.split | |
forced_args = { | |
"micro_batch_size": 1, | |
"train_samples": None, | |
"train_iters": 1, | |
"eval_iters": 1, | |
"eval_interval": 2, | |
"use_seq_len_plus_one_tokens": False | |
} | |
initialize_megatron(extra_args_provider=get_detok_args, args_defaults=forced_args) | |
torch.distributed.barrier() | |
# after parsing, we have to force again the required args | |
args = get_args() | |
for name, value in forced_args.items(): | |
setattr(args, name, value) | |
# create train/valid/test split based on args.split | |
args.iteration = 0 | |
train_iter, valid_iter, test_iter = build_train_valid_test_data_iterators( | |
train_valid_test_datasets_provider) | |
os.makedirs(args.detokenizer_output, exist_ok=True) | |
process_split('test', test_iter._dataset, args.detokenizer_output) | |
process_split('valid', valid_iter._dataset, args.detokenizer_output) | |
process_split('train', train_iter._dataset, args.detokenizer_output) | |
if __name__ == '__main__': | |
main() | |