peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Model-References
/TensorFlow
/nlp
/bert
/extract_features.py
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Extract pre-computed feature vectors from BERT.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import codecs | |
import collections | |
import json | |
import re | |
import modeling | |
import TensorFlow.nlp.bert.data_preprocessing.tokenization as tokenization | |
import tensorflow as tf | |
flags = tf.compat.v1.flags | |
FLAGS = flags.FLAGS | |
flags.DEFINE_string("input_file", None, "") | |
flags.DEFINE_string("output_file", None, "") | |
flags.DEFINE_string("layers", "-1,-2,-3,-4", "") | |
flags.DEFINE_string( | |
"bert_config_file", None, | |
"The config json file corresponding to the pre-trained BERT model. " | |
"This specifies the model architecture.") | |
flags.DEFINE_integer( | |
"max_seq_length", 128, | |
"The maximum total input sequence length after WordPiece tokenization. " | |
"Sequences longer than this will be truncated, and sequences shorter " | |
"than this will be padded.") | |
flags.DEFINE_string( | |
"init_checkpoint", None, | |
"Initial checkpoint (usually from a pre-trained BERT model).") | |
flags.DEFINE_string("vocab_file", None, | |
"The vocabulary file that the BERT model was trained on.") | |
flags.DEFINE_bool( | |
"do_lower_case", True, | |
"Whether to lower case the input text. Should be True for uncased " | |
"models and False for cased models.") | |
flags.DEFINE_integer("batch_size", 32, "Batch size for predictions.") | |
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.") | |
flags.DEFINE_string("master", None, | |
"If using a TPU, the address of the master.") | |
flags.DEFINE_integer( | |
"num_tpu_cores", 8, | |
"Only used if `use_tpu` is True. Total number of TPU cores to use.") | |
flags.DEFINE_bool( | |
"use_one_hot_embeddings", False, | |
"If True, tf.one_hot will be used for embedding lookups, otherwise " | |
"tf.nn.embedding_lookup will be used. On TPUs, this should be True " | |
"since it is much faster.") | |
class InputExample(object): | |
def __init__(self, unique_id, text_a, text_b): | |
self.unique_id = unique_id | |
self.text_a = text_a | |
self.text_b = text_b | |
class InputFeatures(object): | |
"""A single set of features of data.""" | |
def __init__(self, unique_id, tokens, input_ids, input_mask, input_type_ids): | |
self.unique_id = unique_id | |
self.tokens = tokens | |
self.input_ids = input_ids | |
self.input_mask = input_mask | |
self.input_type_ids = input_type_ids | |
def input_fn_builder(features, seq_length): | |
"""Creates an `input_fn` closure to be passed to TPUEstimator.""" | |
all_unique_ids = [] | |
all_input_ids = [] | |
all_input_mask = [] | |
all_input_type_ids = [] | |
for feature in features: | |
all_unique_ids.append(feature.unique_id) | |
all_input_ids.append(feature.input_ids) | |
all_input_mask.append(feature.input_mask) | |
all_input_type_ids.append(feature.input_type_ids) | |
def input_fn(params): | |
"""The actual input function.""" | |
batch_size = params["batch_size"] | |
num_examples = len(features) | |
# This is for demo purposes and does NOT scale to large data sets. We do | |
# not use Dataset.from_generator() because that uses tf.py_func which is | |
# not TPU compatible. The right way to load data is with TFRecordReader. | |
d = tf.data.Dataset.from_tensor_slices({ | |
"unique_ids": | |
tf.constant(all_unique_ids, shape=[num_examples], dtype=tf.int32), | |
"input_ids": | |
tf.constant( | |
all_input_ids, shape=[num_examples, seq_length], | |
dtype=tf.int32), | |
"input_mask": | |
tf.constant( | |
all_input_mask, | |
shape=[num_examples, seq_length], | |
dtype=tf.int32), | |
"input_type_ids": | |
tf.constant( | |
all_input_type_ids, | |
shape=[num_examples, seq_length], | |
dtype=tf.int32), | |
}) | |
d = d.batch(batch_size=batch_size, drop_remainder=False) | |
return d | |
return input_fn | |
def model_fn_builder(bert_config, init_checkpoint, layer_indexes, use_tpu, | |
use_one_hot_embeddings): | |
"""Returns `model_fn` closure for TPUEstimator.""" | |
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument | |
"""The `model_fn` for TPUEstimator.""" | |
unique_ids = features["unique_ids"] | |
input_ids = features["input_ids"] | |
input_mask = features["input_mask"] | |
input_type_ids = features["input_type_ids"] | |
model = modeling.BertModel( | |
config=bert_config, | |
is_training=False, | |
input_ids=input_ids, | |
input_mask=input_mask, | |
token_type_ids=input_type_ids, | |
use_one_hot_embeddings=use_one_hot_embeddings) | |
if mode != tf.estimator.ModeKeys.PREDICT: | |
raise ValueError("Only PREDICT modes are supported: %s" % (mode)) | |
tvars = tf.compat.v1.trainable_variables() | |
scaffold_fn = None | |
(assignment_map, | |
initialized_variable_names) = modeling.get_assignment_map_from_checkpoint( | |
tvars, init_checkpoint) | |
if use_tpu: | |
def tpu_scaffold(): | |
tf.compat.v1.train.init_from_checkpoint(init_checkpoint, assignment_map) | |
return tf.compat.v1.train.Scaffold() | |
scaffold_fn = tpu_scaffold | |
else: | |
tf.compat.v1.train.init_from_checkpoint(init_checkpoint, assignment_map) | |
tf.compat.v1.logging.info("**** Trainable Variables ****") | |
for var in tvars: | |
init_string = "" | |
if var.name in initialized_variable_names: | |
init_string = ", *INIT_FROM_CKPT*" | |
tf.compat.v1.logging.info(" name = %s, shape = %s%s", var.name, var.shape, | |
init_string) | |
all_layers = model.get_all_encoder_layers() | |
predictions = { | |
"unique_id": unique_ids, | |
} | |
for (i, layer_index) in enumerate(layer_indexes): | |
predictions["layer_output_%d" % i] = all_layers[layer_index] | |
output_spec = tf.compat.v1.estimator.tpu.TPUEstimatorSpec( | |
mode=mode, predictions=predictions, scaffold_fn=scaffold_fn) | |
return output_spec | |
return model_fn | |
def convert_examples_to_features(examples, seq_length, tokenizer): | |
"""Loads a data file into a list of `InputBatch`s.""" | |
features = [] | |
for (ex_index, example) in enumerate(examples): | |
tokens_a = tokenizer.tokenize(example.text_a) | |
tokens_b = None | |
if example.text_b: | |
tokens_b = tokenizer.tokenize(example.text_b) | |
if tokens_b: | |
# Modifies `tokens_a` and `tokens_b` in place so that the total | |
# length is less than the specified length. | |
# Account for [CLS], [SEP], [SEP] with "- 3" | |
_truncate_seq_pair(tokens_a, tokens_b, seq_length - 3) | |
else: | |
# Account for [CLS] and [SEP] with "- 2" | |
if len(tokens_a) > seq_length - 2: | |
tokens_a = tokens_a[0:(seq_length - 2)] | |
# The convention in BERT is: | |
# (a) For sequence pairs: | |
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] | |
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 | |
# (b) For single sequences: | |
# tokens: [CLS] the dog is hairy . [SEP] | |
# type_ids: 0 0 0 0 0 0 0 | |
# | |
# Where "type_ids" are used to indicate whether this is the first | |
# sequence or the second sequence. The embedding vectors for `type=0` and | |
# `type=1` were learned during pre-training and are added to the wordpiece | |
# embedding vector (and position vector). This is not *strictly* necessary | |
# since the [SEP] token unambiguously separates the sequences, but it makes | |
# it easier for the model to learn the concept of sequences. | |
# | |
# For classification tasks, the first vector (corresponding to [CLS]) is | |
# used as as the "sentence vector". Note that this only makes sense because | |
# the entire model is fine-tuned. | |
tokens = [] | |
input_type_ids = [] | |
tokens.append("[CLS]") | |
input_type_ids.append(0) | |
for token in tokens_a: | |
tokens.append(token) | |
input_type_ids.append(0) | |
tokens.append("[SEP]") | |
input_type_ids.append(0) | |
if tokens_b: | |
for token in tokens_b: | |
tokens.append(token) | |
input_type_ids.append(1) | |
tokens.append("[SEP]") | |
input_type_ids.append(1) | |
input_ids = tokenizer.convert_tokens_to_ids(tokens) | |
# The mask has 1 for real tokens and 0 for padding tokens. Only real | |
# tokens are attended to. | |
input_mask = [1] * len(input_ids) | |
# Zero-pad up to the sequence length. | |
while len(input_ids) < seq_length: | |
input_ids.append(0) | |
input_mask.append(0) | |
input_type_ids.append(0) | |
assert len(input_ids) == seq_length | |
assert len(input_mask) == seq_length | |
assert len(input_type_ids) == seq_length | |
if ex_index < 5: | |
tf.compat.v1.logging.info("*** Example ***") | |
tf.compat.v1.logging.info("unique_id: %s" % (example.unique_id)) | |
tf.compat.v1.logging.info("tokens: %s" % " ".join( | |
[tokenization.printable_text(x) for x in tokens])) | |
tf.compat.v1.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) | |
tf.compat.v1.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) | |
tf.compat.v1.logging.info( | |
"input_type_ids: %s" % " ".join([str(x) for x in input_type_ids])) | |
features.append( | |
InputFeatures( | |
unique_id=example.unique_id, | |
tokens=tokens, | |
input_ids=input_ids, | |
input_mask=input_mask, | |
input_type_ids=input_type_ids)) | |
return features | |
def _truncate_seq_pair(tokens_a, tokens_b, max_length): | |
"""Truncates a sequence pair in place to the maximum length.""" | |
# This is a simple heuristic which will always truncate the longer sequence | |
# one token at a time. This makes more sense than truncating an equal percent | |
# of tokens from each, since if one sequence is very short then each token | |
# that's truncated likely contains more information than a longer sequence. | |
while True: | |
total_length = len(tokens_a) + len(tokens_b) | |
if total_length <= max_length: | |
break | |
if len(tokens_a) > len(tokens_b): | |
tokens_a.pop() | |
else: | |
tokens_b.pop() | |
def read_examples(input_file): | |
"""Read a list of `InputExample`s from an input file.""" | |
examples = [] | |
unique_id = 0 | |
with tf.io.gfile.GFile(input_file, "r") as reader: | |
while True: | |
line = tokenization.convert_to_unicode(reader.readline()) | |
if not line: | |
break | |
line = line.strip() | |
text_a = None | |
text_b = None | |
m = re.match(r"^(.*) \|\|\| (.*)$", line) | |
if m is None: | |
text_a = line | |
else: | |
text_a = m.group(1) | |
text_b = m.group(2) | |
examples.append( | |
InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b)) | |
unique_id += 1 | |
return examples | |
def main(_): | |
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) | |
layer_indexes = [int(x) for x in FLAGS.layers.split(",")] | |
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) | |
tokenizer = tokenization.FullTokenizer( | |
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) | |
is_per_host = tf.compat.v1.estimator.tpu.InputPipelineConfig.PER_HOST_V2 | |
run_config = tf.compat.v1.estimator.tpu.RunConfig( | |
master=FLAGS.master, | |
tpu_config=tf.compat.v1.estimator.tpu.TPUConfig( | |
num_shards=FLAGS.num_tpu_cores, | |
per_host_input_for_training=is_per_host)) | |
examples = read_examples(FLAGS.input_file) | |
features = convert_examples_to_features( | |
examples=examples, seq_length=FLAGS.max_seq_length, tokenizer=tokenizer) | |
unique_id_to_feature = {} | |
for feature in features: | |
unique_id_to_feature[feature.unique_id] = feature | |
model_fn = model_fn_builder( | |
bert_config=bert_config, | |
init_checkpoint=FLAGS.init_checkpoint, | |
layer_indexes=layer_indexes, | |
use_tpu=FLAGS.use_tpu, | |
use_one_hot_embeddings=FLAGS.use_one_hot_embeddings) | |
# If TPU is not available, this will fall back to normal Estimator on CPU | |
# or GPU. | |
estimator = tf.compat.v1.estimator.tpu.TPUEstimator( | |
use_tpu=FLAGS.use_tpu, | |
model_fn=model_fn, | |
config=run_config, | |
predict_batch_size=FLAGS.batch_size) | |
input_fn = input_fn_builder( | |
features=features, seq_length=FLAGS.max_seq_length) | |
with codecs.getwriter("utf-8")(tf.io.gfile.GFile(FLAGS.output_file, | |
"w")) as writer: | |
for result in estimator.predict(input_fn, yield_single_examples=True): | |
unique_id = int(result["unique_id"]) | |
feature = unique_id_to_feature[unique_id] | |
output_json = collections.OrderedDict() | |
output_json["linex_index"] = unique_id | |
all_features = [] | |
for (i, token) in enumerate(feature.tokens): | |
all_layers = [] | |
for (j, layer_index) in enumerate(layer_indexes): | |
layer_output = result["layer_output_%d" % j] | |
layers = collections.OrderedDict() | |
layers["index"] = layer_index | |
layers["values"] = [ | |
round(float(x), 6) for x in layer_output[i:(i + 1)].flat | |
] | |
all_layers.append(layers) | |
features = collections.OrderedDict() | |
features["token"] = token | |
features["layers"] = all_layers | |
all_features.append(features) | |
output_json["features"] = all_features | |
writer.write(json.dumps(output_json) + "\n") | |
if __name__ == "__main__": | |
flags.mark_flag_as_required("input_file") | |
flags.mark_flag_as_required("vocab_file") | |
flags.mark_flag_as_required("bert_config_file") | |
flags.mark_flag_as_required("init_checkpoint") | |
flags.mark_flag_as_required("output_file") | |
tf.compat.v1.app.run() | |