applied-ai-018's picture
Add files using upload-large-folder tool
eb49b41 verified
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tensorflow as tf
import time
# report latency and throughput during eval
class LogEvalRunHook(tf.estimator.SessionRunHook):
def __init__(self, global_batch_size, hvd_rank=-1):
self.global_batch_size = global_batch_size
self.hvd_rank = hvd_rank
self.count = 0
self.time_list = []
def before_run(self, run_context):
self.t0 = time.time()
def after_run(self, run_context, run_values):
elapsed_secs = time.time() - self.t0
self.count += 1
self.time_list.append(elapsed_secs)
# report throughput during training
class LogTrainRunHook(tf.estimator.SessionRunHook):
def __init__(self, global_batch_size, hvd_rank=-1, save_checkpoints_steps=1000, num_steps_ignore_xla=100):
self.global_batch_size = global_batch_size
self.hvd_rank = hvd_rank
self.save_checkpoints_steps = save_checkpoints_steps
self.total_time = 0.0
self.count = 0 # Holds number of iterations, including skipped iterations for fp16 loss scaling
self.skipped = 0
self.num_steps_ignore_xla = num_steps_ignore_xla
#initial steps while xla is still compilingneed to be ignored from throughput computation
def after_create_session(self, session, coord):
self.init_global_step = session.run(tf.compat.v1.train.get_global_step())
def before_run(self, run_context):
self.t0 = time.time()
return tf.estimator.SessionRunArgs(
fetches=['step_update:0'])
def after_run(self, run_context, run_values):
elapsed_secs = time.time() - self.t0
self.global_step = run_values.results[0]
self.count += 1
# Removing first 100 step + first five steps after every checkpoint save
if (self.global_step - self.init_global_step) <= self.num_steps_ignore_xla or (self.global_step - self.init_global_step) % self.save_checkpoints_steps < 5:
print("Skipping time record for ", self.global_step, " due to checkpoint-saving/warmup overhead")
self.skipped += 1
else:
self.total_time += elapsed_secs