peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Model-References
/TensorFlow
/nlp
/bert
/utils
/utils.py
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import tensorflow as tf | |
import time | |
# report latency and throughput during eval | |
class LogEvalRunHook(tf.estimator.SessionRunHook): | |
def __init__(self, global_batch_size, hvd_rank=-1): | |
self.global_batch_size = global_batch_size | |
self.hvd_rank = hvd_rank | |
self.count = 0 | |
self.time_list = [] | |
def before_run(self, run_context): | |
self.t0 = time.time() | |
def after_run(self, run_context, run_values): | |
elapsed_secs = time.time() - self.t0 | |
self.count += 1 | |
self.time_list.append(elapsed_secs) | |
# report throughput during training | |
class LogTrainRunHook(tf.estimator.SessionRunHook): | |
def __init__(self, global_batch_size, hvd_rank=-1, save_checkpoints_steps=1000, num_steps_ignore_xla=100): | |
self.global_batch_size = global_batch_size | |
self.hvd_rank = hvd_rank | |
self.save_checkpoints_steps = save_checkpoints_steps | |
self.total_time = 0.0 | |
self.count = 0 # Holds number of iterations, including skipped iterations for fp16 loss scaling | |
self.skipped = 0 | |
self.num_steps_ignore_xla = num_steps_ignore_xla | |
#initial steps while xla is still compilingneed to be ignored from throughput computation | |
def after_create_session(self, session, coord): | |
self.init_global_step = session.run(tf.compat.v1.train.get_global_step()) | |
def before_run(self, run_context): | |
self.t0 = time.time() | |
return tf.estimator.SessionRunArgs( | |
fetches=['step_update:0']) | |
def after_run(self, run_context, run_values): | |
elapsed_secs = time.time() - self.t0 | |
self.global_step = run_values.results[0] | |
self.count += 1 | |
# Removing first 100 step + first five steps after every checkpoint save | |
if (self.global_step - self.init_global_step) <= self.num_steps_ignore_xla or (self.global_step - self.init_global_step) % self.save_checkpoints_steps < 5: | |
print("Skipping time record for ", self.global_step, " due to checkpoint-saving/warmup overhead") | |
self.skipped += 1 | |
else: | |
self.total_time += elapsed_secs | |