peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/examples
/finetune_retriever_distributed.sh
# Finetune a BERT or pretrained ICT model using Google natural question data | |
# Datasets can be downloaded from the following link: | |
# https://github.com/facebookresearch/DPR/blob/master/data/download_data.py | |
WORLD_SIZE=8 | |
DISTRIBUTED_ARGS="--nproc_per_node $WORLD_SIZE \ | |
--nnodes 1 \ | |
--node_rank 0 \ | |
--master_addr localhost \ | |
--master_port 6000" | |
CHECKPOINT_PATH=<Specify path for the finetuned retriever model> | |
# Load either of the below | |
BERT_LOAD_PATH=<Path of BERT pretrained model> | |
PRETRAINED_CHECKPOINT=<Path of Pretrained ICT model> | |
python -m torch.distributed.launch $DISTRIBUTED_ARGS ./tasks/main.py \ | |
--task RET-FINETUNE-NQ \ | |
--train-with-neg \ | |
--train-hard-neg 1 \ | |
--pretrained-checkpoint ${PRETRAINED_CHECKPOINT} \ | |
--num-layers 12 \ | |
--hidden-size 768 \ | |
--num-attention-heads 12 \ | |
--tensor-model-parallel-size 1 \ | |
--tokenizer-type BertWordPieceLowerCase \ | |
--train-data nq-train.json \ | |
--valid-data nq-dev.json \ | |
--save ${CHECKPOINT_PATH} \ | |
--load ${CHECKPOINT_PATH} \ | |
--vocab-file bert-vocab.txt \ | |
--bert-load ${BERT_LOAD_PATH} \ | |
--save-interval 5000 \ | |
--log-interval 10 \ | |
--eval-interval 20000 \ | |
--eval-iters 100 \ | |
--indexer-log-interval 1000 \ | |
--faiss-use-gpu \ | |
--DDP-impl torch \ | |
--fp16 \ | |
--retriever-report-topk-accuracies 1 5 10 20 100 \ | |
--seq-length 512 \ | |
--retriever-seq-length 256 \ | |
--max-position-embeddings 512 \ | |
--retriever-score-scaling \ | |
--epochs 80 \ | |
--micro-batch-size 8 \ | |
--eval-micro-batch-size 16 \ | |
--indexer-batch-size 128 \ | |
--lr 2e-5 \ | |
--lr-warmup-fraction 0.01 \ | |
--weight-decay 1e-1 | |