peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/examples
/pretrain_bert.sh
export CUDA_DEVICE_MAX_CONNECTIONS=1 | |
CHECKPOINT_PATH=<Specify path> | |
VOCAB_FILE=<Specify path to file>/bert-vocab.txt | |
DATA_PATH=<Specify path and file prefix>_text_sentence | |
BERT_ARGS=" | |
--num-layers 24 \ | |
--hidden-size 1024 \ | |
--num-attention-heads 16 \ | |
--seq-length 512 \ | |
--max-position-embeddings 512 \ | |
--micro-batch-size 4 \ | |
--global-batch-size 8 \ | |
--lr 0.0001 \ | |
--train-iters 2000000 \ | |
--lr-decay-iters 990000 \ | |
--lr-decay-style linear \ | |
--min-lr 0.00001 \ | |
--weight-decay 1e-2 \ | |
--lr-warmup-fraction .01 \ | |
--clip-grad 1.0 \ | |
--fp16 | |
" | |
DATA_ARGS=" | |
--data-path $DATA_PATH \ | |
--vocab-file $VOCAB_FILE \ | |
--data-impl mmap \ | |
--split 949,50,1 | |
" | |
OUTPUT_ARGS=" | |
--log-interval 100 \ | |
--save-interval 10000 \ | |
--eval-interval 1000 \ | |
--eval-iters 10 | |
" | |
torchrun pretrain_bert.py \ | |
$BERT_ARGS \ | |
$DATA_ARGS \ | |
$OUTPUT_ARGS \ | |
--save $CHECKPOINT_PATH \ | |
--load $CHECKPOINT_PATH | |