peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/examples
/pretrain_ict.sh
# Runs the "217M" parameter biencoder model for ICT retriever | |
RANK=0 | |
WORLD_SIZE=1 | |
PRETRAINED_BERT_PATH=<Specify path of pretrained BERT model> | |
TEXT_DATA_PATH=<Specify path and file prefix of the text data> | |
TITLE_DATA_PATH=<Specify path and file prefix od the titles> | |
CHECKPOINT_PATH=<Specify path> | |
python pretrain_ict.py \ | |
--num-layers 12 \ | |
--hidden-size 768 \ | |
--num-attention-heads 12 \ | |
--tensor-model-parallel-size 1 \ | |
--micro-batch-size 32 \ | |
--seq-length 256 \ | |
--max-position-embeddings 512 \ | |
--train-iters 100000 \ | |
--vocab-file bert-vocab.txt \ | |
--tokenizer-type BertWordPieceLowerCase \ | |
--DDP-impl torch \ | |
--bert-load ${PRETRAINED_BERT_PATH} \ | |
--log-interval 100 \ | |
--eval-interval 1000 \ | |
--eval-iters 10 \ | |
--retriever-report-topk-accuracies 1 5 10 20 100 \ | |
--retriever-score-scaling \ | |
--load $CHECKPOINT_PATH \ | |
--save $CHECKPOINT_PATH \ | |
--data-path ${TEXT_DATA_PATH} \ | |
--titles-data-path ${TITLE_DATA_PATH} \ | |
--lr 0.0001 \ | |
--lr-decay-style linear \ | |
--weight-decay 1e-2 \ | |
--clip-grad 1.0 \ | |
--lr-warmup-fraction 0.01 \ | |
--save-interval 4000 \ | |
--exit-interval 8000 \ | |
--query-in-block-prob 0.1 \ | |
--fp16 | |