peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/megatron
/data
/realm_index.py
import itertools | |
import os | |
import pickle | |
import shutil | |
import numpy as np | |
import torch | |
from megatron import get_args | |
from megatron.core import mpu | |
def detach(tensor): | |
return tensor.detach().cpu().numpy() | |
class OpenRetreivalDataStore(object): | |
""" | |
Serializable data structure for holding data for blocks -- | |
embeddings and necessary metadata for Retriever | |
""" | |
def __init__(self, embedding_path=None, load_from_path=True, rank=None): | |
self.embed_data = dict() | |
if embedding_path is None: | |
args = get_args() | |
embedding_path = args.embedding_path | |
rank = args.rank | |
self.embedding_path = embedding_path | |
self.rank = rank | |
if load_from_path: | |
self.load_from_file() | |
block_data_name = os.path.splitext(self.embedding_path)[0] | |
self.temp_dir_name = block_data_name + '_tmp' | |
def state(self): | |
return { | |
'embed_data': self.embed_data, | |
} | |
def clear(self): | |
""" | |
Clear the embedding data structures to save memory. | |
The metadata ends up getting used, and is also much smaller in | |
dimensionality so it isn't really worth clearing. | |
""" | |
self.embed_data = dict() | |
def load_from_file(self): | |
"""Populate members from instance saved to file""" | |
if not mpu.model_parallel_is_initialized() or mpu.get_data_parallel_rank() == 0: | |
print("\n> Unpickling BlockData", flush=True) | |
state_dict = pickle.load(open(self.embedding_path, 'rb')) | |
if not mpu.model_parallel_is_initialized() or mpu.get_data_parallel_rank() == 0: | |
print(">> Finished unpickling BlockData\n", flush=True) | |
self.embed_data = state_dict['embed_data'] | |
def add_block_data(self, row_id, block_embeds, allow_overwrite=False): | |
""" | |
Add data for set of blocks | |
:param row_id: 1D array of unique int ids for the blocks | |
:param block_embeds: 2D array of embeddings of the blocks | |
In the case of retriever this will be [start_idx, end_idx, doc_idx] | |
""" | |
for idx, embed in zip(row_id, block_embeds): | |
if not allow_overwrite and idx in self.embed_data: | |
raise ValueError("Unexpectedly tried to overwrite block data") | |
self.embed_data[idx] = np.float16(embed) | |
def save_shard(self): | |
""" | |
Save the block data that was created this in this process | |
""" | |
if not os.path.isdir(self.temp_dir_name): | |
os.makedirs(self.temp_dir_name, exist_ok=True) | |
# save the data for each shard | |
with open('{}/{}.pkl'.format(self.temp_dir_name, self.rank), 'wb') \ | |
as writer: | |
pickle.dump(self.state(), writer) | |
def merge_shards_and_save(self): | |
#Combine all the shards made using save_shard | |
shard_names = os.listdir(self.temp_dir_name) | |
seen_own_shard = False | |
for fname in os.listdir(self.temp_dir_name): | |
shard_rank = int(os.path.splitext(fname)[0]) | |
if shard_rank == self.rank: | |
seen_own_shard = True | |
continue | |
with open('{}/{}'.format(self.temp_dir_name, fname), 'rb') as f: | |
data = pickle.load(f) | |
old_size = len(self.embed_data) | |
shard_size = len(data['embed_data']) | |
# add the shard's data and check to make sure there | |
# is no overlap | |
self.embed_data.update(data['embed_data']) | |
assert len(self.embed_data) == old_size + shard_size | |
assert seen_own_shard | |
# save the consolidated shards and remove temporary directory | |
with open(self.embedding_path, 'wb') as final_file: | |
pickle.dump(self.state(), final_file) | |
shutil.rmtree(self.temp_dir_name, ignore_errors=True) | |
print("Finished merging {} shards for a total of {} embeds".format( | |
len(shard_names), len(self.embed_data)), flush=True) | |
class FaissMIPSIndex(object): | |
""" | |
Wrapper object for a BlockData which similarity search via FAISS under the hood | |
""" | |
def __init__(self, embed_size, embed_data=None, use_gpu=False): | |
self.embed_size = embed_size | |
self.embed_data = embed_data | |
self.use_gpu = use_gpu | |
self.mips_index = None | |
self._set_mips_index() | |
def _set_mips_index(self): | |
""" | |
Create a Faiss Flat index with inner product as the metric | |
to search against | |
""" | |
try: | |
import faiss | |
except ImportError: | |
raise Exception("Error: Please install faiss to use FaissMIPSIndex") | |
if not mpu.model_parallel_is_initialized() or mpu.get_data_parallel_rank() == 0: | |
print("\n> Building index", flush=True) | |
cpu_index = faiss.IndexFlatIP(self.embed_size) | |
if self.use_gpu: | |
# create resources and config for GpuIndex | |
config = faiss.GpuMultipleClonerOptions() | |
config.shard = True | |
config.useFloat16 = True | |
gpu_index = faiss.index_cpu_to_all_gpus(cpu_index, co=config) | |
self.mips_index = faiss.IndexIDMap(gpu_index) | |
if not mpu.model_parallel_is_initialized() or mpu.get_data_parallel_rank() == 0: | |
print(">> Initialized index on GPU", flush=True) | |
else: | |
# CPU index supports IDs so wrap with IDMap | |
self.mips_index = faiss.IndexIDMap(cpu_index) | |
if not mpu.model_parallel_is_initialized() or mpu.get_data_parallel_rank() == 0: | |
print(">> Initialized index on CPU", flush=True) | |
# if we were constructed with a BlockData, then automatically load it | |
# when the FAISS structure is built | |
if self.embed_data is not None: | |
self.add_embed_data(self.embed_data) | |
def reset_index(self): | |
"""Delete existing index and create a new""" | |
del self.mips_index | |
# reset the block data so that _set_block_index will reload it as well | |
if self.embed_data is not None: | |
embed_data_path = self.embed_data.embedding_path | |
del self.embed_data | |
self.embed_data = OpenRetreivalDataStore(embed_data_path) | |
self._set_mips_index() | |
def update_index(self): | |
"""Delete existing index and create a new""" | |
del self.mips_index | |
# reset the block data so that _set_mips_index will reload it as well | |
if self.embed_data is not None: | |
self.embed_data.load_from_file() | |
self._set_mips_index() | |
def add_embed_data(self, all_embed_data): | |
"""Add the embedding of each block to the underlying FAISS index""" | |
# this assumes the embed_data is a dict : {int: np.array<float>} | |
block_indices, block_embeds = zip(*all_embed_data.embed_data.items()) | |
# the embeddings have to be entered in as float32 even though the math | |
# internally is done with float16. | |
embeds_arr = np.float32(np.array(block_embeds)) | |
indices_arr = np.array(block_indices) | |
# we no longer need the embedding data since it's in the index now | |
all_embed_data.clear() | |
self.mips_index.add_with_ids(embeds_arr, indices_arr) | |
if not mpu.model_parallel_is_initialized() or mpu.get_data_parallel_rank() == 0: | |
print(">>> Finished adding block data to index", flush=True) | |
def search_mips_index(self, query_embeds, top_k, reconstruct=True): | |
""" | |
Get the top-k blocks by the index distance metric. | |
:param reconstruct: if True: return a [num_queries x k x embed_dim] | |
array of blocks | |
if False: return [num_queries x k] array of | |
distances, and another for indices | |
""" | |
query_embeds = np.float32(detach(query_embeds)) | |
if reconstruct: | |
# get the vectors themselves | |
top_k_block_embeds = self.mips_index.search_and_reconstruct(\ | |
query_embeds, top_k) | |
return top_k_block_embeds | |
else: | |
# get distances and indices of closest vectors | |
distances, block_indices = self.mips_index.search(query_embeds, top_k) | |
return distances, block_indices | |