peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/megatron
/indexer.py
import sys | |
import time | |
import torch | |
import torch.distributed as dist | |
from megatron import get_args, print_rank_0 | |
from megatron.core import mpu | |
from megatron.checkpointing import load_biencoder_checkpoint | |
from megatron.data.orqa_wiki_dataset import get_open_retrieval_wiki_dataset | |
from megatron.data.orqa_wiki_dataset import get_open_retrieval_batch | |
from megatron.data.biencoder_dataset_utils import get_one_epoch_dataloader | |
from megatron.data.realm_index import detach, OpenRetreivalDataStore | |
from megatron.model.biencoder_model import get_model_provider | |
from megatron.training import get_model | |
class IndexBuilder(object): | |
""" | |
Object for taking one pass over a dataset and creating a BlockData of its | |
embeddings | |
""" | |
def __init__(self): | |
args = get_args() | |
self.model = None | |
self.dataloader = None | |
self.evidence_embedder_obj = None | |
self.biencoder_shared_query_context_model = \ | |
args.biencoder_shared_query_context_model | |
# need to know whether we're using a REALM checkpoint (args.load) | |
# or ICT checkpoint | |
assert not (args.load and args.ict_load) | |
self.log_interval = args.indexer_log_interval | |
self.batch_size = args.indexer_batch_size | |
self.load_attributes() | |
self.is_main_builder = mpu.get_data_parallel_rank() == 0 | |
self.num_total_builders = mpu.get_data_parallel_world_size() | |
self.iteration = self.total_processed = 0 | |
def load_attributes(self): | |
""" | |
Load the necessary attributes: model, dataloader and empty BlockData | |
""" | |
only_context_model = True | |
if self.biencoder_shared_query_context_model: | |
only_context_model = False | |
model = get_model(get_model_provider(only_context_model=\ | |
only_context_model, biencoder_shared_query_context_model=\ | |
self.biencoder_shared_query_context_model)) | |
self.model = load_biencoder_checkpoint(model, | |
only_context_model=only_context_model) | |
assert len(self.model) == 1 | |
self.model[0].eval() | |
self.dataset = get_open_retrieval_wiki_dataset() | |
self.dataloader = iter(get_one_epoch_dataloader(self.dataset, \ | |
self.batch_size)) | |
self.evidence_embedder_obj = OpenRetreivalDataStore( \ | |
load_from_path=False) | |
def track_and_report_progress(self, batch_size): | |
""" | |
Utility function for tracking progress | |
""" | |
self.iteration += 1 | |
self.total_processed += batch_size * self.num_total_builders | |
if self.is_main_builder and self.iteration % self.log_interval == 0: | |
print('Batch {:10d} | Total {:10d}'.format(self.iteration, | |
self.total_processed), flush=True) | |
def build_and_save_index(self): | |
""" | |
Goes through one epoch of the dataloader and adds all data to this | |
instance's BlockData. | |
The copy of BlockData is saved as a shard, which when run in a | |
distributed setting will be consolidated by the rank 0 process | |
and saved as a final pickled BlockData. | |
""" | |
assert len(self.model) == 1 | |
unwrapped_model = self.model[0] | |
while not hasattr(unwrapped_model, 'embed_text'): | |
unwrapped_model = unwrapped_model.module | |
while True: | |
try: | |
# batch also has query_tokens and query_pad_data | |
row_id, context_tokens, context_mask, context_types, \ | |
context_pad_mask = get_open_retrieval_batch( \ | |
self.dataloader) | |
except (StopIteration, IndexError): | |
break | |
# TODO: can we add with torch.no_grad() to reduce memory usage | |
# detach, separate fields and add to BlockData | |
assert context_mask.dtype == torch.bool | |
context_logits = unwrapped_model.embed_text( | |
unwrapped_model.context_model, context_tokens, context_mask, | |
context_types) | |
context_logits = detach(context_logits) | |
row_id = detach(row_id) | |
self.evidence_embedder_obj.add_block_data(row_id, context_logits) | |
self.track_and_report_progress(batch_size=len(row_id)) | |
# This process signals to finalize its shard and then synchronize with | |
# the other processes | |
self.evidence_embedder_obj.save_shard() | |
torch.distributed.barrier() | |
del self.model | |
# rank 0 process builds the final copy | |
if self.is_main_builder: | |
self.evidence_embedder_obj.merge_shards_and_save() | |
# make sure that every single piece of data was embedded | |
assert len(self.evidence_embedder_obj.embed_data) == \ | |
len(self.dataset) | |
self.evidence_embedder_obj.clear() | |
# complete building the final copy | |
torch.distributed.barrier() | |