peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/megatron
/optimizer
/clip_grads.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""Gradient clipping.""" | |
import torch | |
try: | |
from torch._six import inf as inf | |
except ModuleNotFoundError: | |
from torch import inf as inf | |
from deepspeed.accelerator import get_accelerator | |
if get_accelerator().device_name() == 'cuda': | |
from apex.multi_tensor_apply import multi_tensor_applier | |
import amp_C | |
from megatron.model.module import param_is_not_shared | |
from megatron.core.tensor_parallel import param_is_not_tensor_parallel_duplicate | |
def clip_grad_norm_fp32(parameters, grads_for_norm, | |
max_norm, norm_type=2, | |
model_parallel_group=None): | |
"""Clips gradient norm of an iterable of parameters whose gradients | |
are in fp32. | |
This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and | |
added functionality to handle model parallel parameters. Note that | |
the gradients are modified in place. | |
Arguments: | |
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a | |
single Tensor that will have gradients normalized | |
grads_for_norm (Iterable[Tensor]): an iterable of Tensors or a single | |
Tensor that will be used for calculating the grad norm. | |
max_norm (float or int): max norm of the gradients | |
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for | |
infinity norm. | |
model_parallel_group (group): given the nature of the distributed | |
optimizer, this is passed as an argument. | |
Returns: | |
Total norm of the parameters (viewed as a single vector). | |
""" | |
if isinstance(parameters, torch.Tensor): | |
parameters = [parameters] | |
if isinstance(grads_for_norm, torch.Tensor): | |
grads_for_norm = [grads_for_norm] | |
# Grads. | |
grads = [] | |
for param in parameters: | |
if param.grad is not None: | |
assert param.grad.type() == 'torch.{}.FloatTensor'.format(get_accelerator().device_name()) | |
grads.append(param.grad.detach()) | |
# Norm parameters. | |
max_norm = float(max_norm) | |
norm_type = float(norm_type) | |
total_norm = 0.0 | |
# Calculate norm. | |
if norm_type == inf: | |
total_norm = max(grad.abs().max() for grad in grads_for_norm) | |
total_norm_cuda = get_accelerator().FloatTensor([float(total_norm)]) | |
# Take max across all model-parallel GPUs. | |
torch.distributed.all_reduce(total_norm_cuda, | |
op=torch.distributed.ReduceOp.MAX, | |
group=model_parallel_group) | |
total_norm = total_norm_cuda[0].item() | |
else: | |
if norm_type == 2.0: | |
if get_accelerator().device_name() == 'cuda': | |
dummy_overflow_buf = torch.cuda.IntTensor([0]) | |
# Use apex's multi-tensor applier for efficiency reasons. | |
# Multi-tensor applier takes a function and a list of list | |
# and performs the operation on that list all in one kernel. | |
if grads_for_norm: | |
grad_norm, _ = multi_tensor_applier( | |
amp_C.multi_tensor_l2norm, | |
dummy_overflow_buf, | |
[grads_for_norm], | |
False # no per-parameter norm | |
) | |
else: | |
grad_norm = torch.cuda.FloatTensor([0]) | |
else: | |
grad_norm = torch.norm(grads_for_norm,p=2.0) | |
# Since we will be summing across data parallel groups, | |
# we need the pow(norm-type). | |
total_norm = grad_norm ** norm_type | |
else: | |
for grad in grads_for_norm: | |
grad_norm = torch.norm(grad, norm_type) | |
total_norm += grad_norm ** norm_type | |
# Sum across all model-parallel GPUs. | |
torch.distributed.all_reduce(total_norm, | |
op=torch.distributed.ReduceOp.SUM, | |
group=model_parallel_group) | |
total_norm = total_norm.item() ** (1.0 / norm_type) | |
# Scale. | |
clip_coeff = max_norm / (total_norm + 1.0e-6) | |
if clip_coeff < 1.0: | |
if get_accelerator().device_name() == 'cuda': | |
dummy_overflow_buf = get_accelerator().IntTensor([0]) | |
multi_tensor_applier(amp_C.multi_tensor_scale, | |
dummy_overflow_buf, | |
[grads, grads], | |
clip_coeff) | |
else: | |
for g in grads: | |
g.detach().mul_(clip_coeff.to(g.device)) | |
return total_norm | |
def count_zeros_fp32(parameters, model_parallel_group): | |
if isinstance(parameters, torch.Tensor): | |
parameters = [parameters] | |
# Filter parameters based on: | |
# - grad should not be none | |
# - parameter should not be shared | |
# - should not be a replica due to tensor model parallelism | |
total_num_zeros = torch.cuda.FloatTensor([0.0]) | |
for param in parameters: | |
grad_not_none = param.grad is not None | |
is_not_shared = param_is_not_shared(param) | |
is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param) | |
if grad_not_none and is_not_shared and is_not_tp_duplicate: | |
grad = param.grad.detach() | |
num_zeros = grad.numel() - torch.count_nonzero(grad) | |
total_num_zeros = num_zeros + total_num_zeros | |
# Sum across all model-parallel GPUs. | |
torch.distributed.all_reduce(total_num_zeros, | |
op=torch.distributed.ReduceOp.SUM, | |
group=model_parallel_group) | |
total_num_zeros = total_num_zeros.item() | |
return total_num_zeros | |