peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/megatron
/optimizer_param_scheduler.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""Learning rate decay and weight decay incr functions.""" | |
import math | |
from megatron import print_rank_0, get_args | |
class OptimizerParamScheduler(object): | |
"""Anneals learning rate and weight decay""" | |
def __init__(self, optimizer, max_lr, min_lr, | |
lr_warmup_steps, lr_decay_steps, lr_decay_style, | |
start_wd, end_wd, wd_incr_steps, wd_incr_style, | |
use_checkpoint_opt_param_scheduler=True, | |
override_opt_param_scheduler=False): | |
args = get_args() | |
# Class values. | |
self.optimizer = optimizer | |
self.max_lr = float(max_lr) | |
self.min_lr = min_lr | |
assert self.min_lr >= 0.0 | |
assert self.max_lr >= self.min_lr | |
self.lr_warmup_steps = lr_warmup_steps | |
self.num_steps = 0 | |
self.lr_decay_steps = lr_decay_steps | |
assert self.lr_decay_steps > 0 | |
assert self.lr_warmup_steps < self.lr_decay_steps | |
self.lr_decay_tokens = args.lr_decay_tokens | |
self.num_tokens = 0 | |
self.lr_warmup_tokens = args.lr_warmup_tokens | |
self.lr_decay_style = lr_decay_style | |
self.start_wd = start_wd | |
self.end_wd = end_wd | |
assert self.start_wd >= 0.0 | |
assert self.end_wd >= self.start_wd | |
self.wd_incr_steps = wd_incr_steps | |
self.wd_incr_style = wd_incr_style | |
self.override_opt_param_scheduler = override_opt_param_scheduler | |
self.use_checkpoint_opt_param_scheduler = use_checkpoint_opt_param_scheduler | |
if self.override_opt_param_scheduler: | |
assert not self.use_checkpoint_opt_param_scheduler, 'both override and '\ | |
'use-checkpoint are set.' | |
# Set the learning rate | |
self.step(0) | |
print_rank_0('> learning rate decay style: {}'.format(self.lr_decay_style)) | |
def get_wd(self): | |
""" Weight decay incr functions""" | |
if self.num_steps > self.wd_incr_steps: | |
return self.end_wd | |
if self.wd_incr_style == 'constant': | |
assert self.start_wd == self.end_wd | |
return self.end_wd | |
incr_ratio = float(self.num_steps) / float(self.wd_incr_steps) | |
assert incr_ratio >= 0.0 | |
assert incr_ratio <= 1.0 | |
delta_wd = self.end_wd - self.start_wd | |
if self.wd_incr_style == 'linear': | |
coeff = incr_ratio | |
elif self.wd_incr_style == 'cosine': | |
coeff = 0.5 * (math.cos(math.pi * (1 - incr_ratio)) + 1.0) | |
else: | |
raise Exception('{} weight decay increment style is not supported.'.format( | |
self.wd_incr_style)) | |
return self.start_wd + coeff * delta_wd | |
def get_lr(self): | |
"""Learning rate decay functions from: | |
https://openreview.net/pdf?id=BJYwwY9ll pg. 4""" | |
# Use linear warmup for the initial part. | |
if self.lr_warmup_tokens is None: | |
if self.lr_warmup_steps > 0 and self.num_steps <= self.lr_warmup_steps: | |
if self.num_steps == self.lr_warmup_steps and \ | |
self.lr_decay_tokens is not None: | |
# The case of step/sample-wise warmup + token-wise decay | |
self.lr_warmup_tokens = self.num_tokens | |
return self.max_lr * float(self.num_steps) / \ | |
float(self.lr_warmup_steps) | |
else: | |
if self.lr_warmup_tokens > 0 and self.num_tokens <= self.lr_warmup_tokens: | |
return self.max_lr * float(self.num_tokens) / \ | |
float(self.lr_warmup_tokens) | |
# If the learning rate is constant, just return the initial value. | |
if self.lr_decay_style == 'constant': | |
return self.max_lr | |
# For any steps larger than `self.lr_decay_steps`, use `self.min_lr`. | |
if self.lr_decay_tokens is None: | |
if self.num_steps > self.lr_decay_steps: | |
return self.min_lr | |
else: | |
if self.num_tokens > self.lr_decay_tokens: | |
return self.min_lr | |
# If we are done with the warmup period, use the decay style. | |
if self.lr_decay_style == 'inverse-square-root': | |
if self.lr_warmup_tokens is None: | |
warmup_steps = max(self.lr_warmup_steps, 1) | |
num_steps = max(self.num_steps, 1) | |
lr = self.max_lr * warmup_steps ** 0.5 / (num_steps ** 0.5) | |
else: | |
warmup_tokens = max(self.lr_warmup_tokens, 1) | |
num_tokens = max(self.num_tokens, 1) | |
lr = self.max_lr * warmup_tokens ** 0.5 / (num_tokens ** 0.5) | |
return max(self.min_lr, lr) | |
if self.lr_decay_tokens is None: | |
num_steps_ = self.num_steps - self.lr_warmup_steps | |
decay_steps_ = self.lr_decay_steps - self.lr_warmup_steps | |
decay_ratio = float(num_steps_) / float(decay_steps_) | |
else: | |
num_tokens_ = self.num_tokens - self.lr_warmup_tokens | |
decay_tokens_ = self.lr_decay_tokens - self.lr_warmup_tokens | |
decay_ratio = float(num_tokens_) / float(decay_tokens_) | |
assert decay_ratio >= 0.0 | |
assert decay_ratio <= 1.0 | |
delta_lr = self.max_lr - self.min_lr | |
if self.lr_decay_style == 'linear': | |
coeff = (1.0 - decay_ratio) | |
elif self.lr_decay_style == 'cosine': | |
coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0) | |
else: | |
raise Exception('{} decay style is not supported.'.format( | |
self.lr_decay_style)) | |
return self.min_lr + coeff * delta_lr | |
def step(self, increment, token_num=None): | |
"""Set lr for all parameters groups.""" | |
if token_num is None: | |
args = get_args() | |
token_num = args.consumed_train_tokens | |
self.num_tokens = token_num | |
self.num_steps += increment | |
new_lr = self.get_lr() | |
new_wd = self.get_wd() | |
for group in self.optimizer.param_groups: | |
group['lr'] = new_lr * group.get('lr_mult', 1.0) | |
group['weight_decay'] = new_wd * group.get('wd_mult', 1.0) | |
def state_dict(self): | |
state_dict = { | |
'max_lr': self.max_lr, | |
'lr_warmup_steps': self.lr_warmup_steps, | |
'lr_warmup_tokens': self.lr_warmup_tokens, | |
'num_steps': self.num_steps, | |
'num_tokens': self.num_tokens, | |
'lr_decay_style': self.lr_decay_style, | |
'lr_decay_steps': self.lr_decay_steps, | |
'lr_decay_tokens': self.lr_decay_tokens, | |
'min_lr': self.min_lr, | |
'start_wd': self.start_wd, | |
'end_wd': self.end_wd, | |
'wd_incr_style': self.wd_incr_style, | |
'wd_incr_steps': self.wd_incr_steps | |
} | |
return state_dict | |
def _check_and_set(self, cls_value, sd_value, name): | |
"""Auxiliary function for checking the values in the checkpoint and | |
setting them.""" | |
if self.override_opt_param_scheduler: | |
print_rank_0(' > overriding {} value to {}'.format(name, cls_value)) | |
return cls_value | |
if not self.use_checkpoint_opt_param_scheduler: | |
assert cls_value == sd_value, \ | |
f'OptimizerParamScheduler: class input value {cls_value} and checkpoint' \ | |
f'value {sd_value} for {name} do not match' | |
print_rank_0(' > using checkpoint value {} for {}'.format(sd_value, | |
name)) | |
return sd_value | |
def load_state_dict(self, sd): | |
if 'start_lr' in sd: | |
max_lr_ = sd['start_lr'] | |
else: | |
max_lr_ = sd['max_lr'] | |
self.max_lr = self._check_and_set(self.max_lr, max_lr_, | |
'learning rate') | |
self.min_lr = self._check_and_set(self.min_lr, sd['min_lr'], | |
'minimum learning rate') | |
if 'warmup_iter' in sd: | |
lr_warmup_steps_ = sd['warmup_iter'] | |
elif 'warmup_steps' in sd: | |
lr_warmup_steps_ = sd['warmup_steps'] | |
else: | |
lr_warmup_steps_ = sd['lr_warmup_steps'] | |
self.lr_warmup_steps = self._check_and_set(self.lr_warmup_steps, | |
lr_warmup_steps_, | |
'warmup iterations') | |
if 'warmup_tokens' in sd: | |
lr_warmup_tokens_ = sd['warmup_tokens'] | |
else: | |
lr_warmup_tokens_ = sd['lr_warmup_tokens'] | |
self.lr_warmup_tokens = self._check_and_set(self.lr_warmup_tokens, | |
lr_warmup_tokens_, | |
'warmup tokens') | |
if 'end_iter' in sd: | |
lr_decay_steps_ = sd['end_iter'] | |
elif 'decay_steps' in sd: | |
lr_decay_steps_ = sd['decay_steps'] | |
else: | |
lr_decay_steps_ = sd['lr_decay_steps'] | |
self.lr_decay_steps = self._check_and_set(self.lr_decay_steps, lr_decay_steps_, | |
'total number of iterations') | |
if 'decay_tokens' in sd: | |
lr_decay_tokens_ = sd['decay_tokens'] | |
else: | |
lr_decay_tokens_ = sd['lr_decay_tokens'] | |
self.lr_decay_tokens = self._check_and_set(self.lr_decay_tokens, | |
lr_decay_tokens_, | |
'decay tokens') | |
if 'decay_style' in sd: | |
lr_decay_style_ = sd['decay_style'] | |
else: | |
lr_decay_style_ = sd['lr_decay_style'] | |
self.lr_decay_style = self._check_and_set(self.lr_decay_style, | |
lr_decay_style_, | |
'learning rate decay style') | |
if 'num_iters' in sd: | |
num_steps = sd['num_iters'] | |
else: | |
num_steps = sd['num_steps'] | |
if 'num_tokens' in sd: | |
self.num_tokens = sd['num_tokens'] | |
self.step(increment=num_steps, token_num=self.num_tokens) | |
if 'start_wd' in sd: | |
self.start_wd = self._check_and_set(self.start_wd, | |
sd['start_wd'], | |
"start weight decay") | |
self.end_wd = self._check_and_set(self.end_wd, | |
sd['end_wd'], | |
"end weight decay") | |
self.wd_incr_steps = self._check_and_set(self.wd_incr_steps, | |
sd['wd_incr_steps'], | |
"total number of weight decay iterations") | |
self.wd_incr_style = self._check_and_set(self.wd_incr_style, | |
sd['wd_incr_style'], | |
"weight decay incr style") | |