peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/megatron
/profiler.py
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
import sys | |
import os | |
on_step_begin = [] | |
on_step_end = [] | |
def trigger(phase): | |
[f() for f in phase] | |
def setup_profiler(args, device): | |
if args.profile is None: | |
return | |
start_step, end_step = map(int, args.profile_steps.split(',')) | |
active_steps = end_step - start_step + 1 | |
cur_step = 0 | |
def on_step_begin_fn(): | |
nonlocal cur_step | |
cur_step = cur_step + 1 | |
on_step_begin.append(on_step_begin_fn) | |
def when(cond, clbk): | |
def fn(): | |
if cond(): | |
clbk() | |
return fn | |
def is_start_step(): | |
return cur_step == start_step | |
def is_end_step(): | |
return cur_step == end_step | |
def is_capture_step(): | |
return cur_step >= start_step and cur_step <= end_step | |
if args.profile.startswith('pt'): | |
schedule = torch.profiler.schedule(wait=0, warmup=0, active=active_steps, repeat=1) | |
activities = [torch.profiler.ProfilerActivity.CPU] | |
activities.extend([torch.profiler.ProfilerActivity.HPU] if device.startswith("hpu") else []) | |
activities.extend([torch.profiler.ProfilerActivity.CUDA] if device.startswith("cuda") else []) | |
full = args.profile == 'pt-full' | |
profiler = torch.profiler.profile( | |
schedule=schedule, | |
activities=activities, | |
on_trace_ready=torch.profiler.tensorboard_trace_handler(args.tensorboard_dir, use_gzip=True), | |
with_stack=full) | |
on_step_begin.append(when(is_start_step, profiler.start)) | |
on_step_end.append(when(is_capture_step, profiler.step)) | |
on_step_end.append(when(is_end_step, profiler.stop)) | |
elif args.profile == 'hltv': | |
sys.path.append(os.environ['PYTORCH_MODULES_ROOT_PATH']) | |
from topologies.tools import SynapseProfilerApi, TraceType | |
api = SynapseProfilerApi() | |
def on_start_step(): | |
nonlocal api | |
api.profiler_start(TraceType.TraceAll, 0) | |
def on_end_step(): | |
nonlocal api | |
import habana_frameworks.torch.hpu as hpu | |
hpu.synchronize() | |
api.profiler_stop(TraceType.TraceAll, 0) | |
api.profiler_get_trace_json(TraceType.TraceAll, 0) | |
on_step_begin.append(when(is_start_step, on_start_step)) | |
on_step_end.append(when(is_end_step, on_end_step)) | |