peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/megatron
/text_generation
/generation.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""Generation utilities.""" | |
import torch | |
import torch.nn.functional as F | |
from megatron import get_args, get_tokenizer | |
from megatron.core import mpu | |
from megatron.utils import get_ltor_masks_and_position_ids | |
from .communication import ( | |
copy_from_last_to_first_pipeline_stage, | |
broadcast_from_last_pipeline_stage, | |
broadcast_from_last_to_first_pipeline_stage) | |
from .forward_step import ForwardStep | |
from .sampling import sample | |
from .beam_utils import BeamHypotheses | |
def score_and_return_on_first_stage(model, tokens, lengths): | |
"""Function for just scoring. | |
Arguments: | |
model: no interleaving is supported. | |
tokens: prompt tokens extended to be of size [b, max_prompt_length] | |
lengths: original prompt length, size: [b] | |
Note: Outside of model, other parameters only need to be available on | |
rank 0. | |
Outputs: | |
output_log_probs: log probability of the selected tokens. size: [b, s] | |
""" | |
args = get_args() | |
batch_size = tokens.size(0) | |
max_prompt_length = lengths.max().item() | |
assert max_prompt_length == tokens.size(1) | |
if max_prompt_length > args.max_position_embeddings: | |
raise ValueError("Length of prompt + tokens_to_generate longer than allowed") | |
if max_prompt_length * batch_size > args.max_tokens_to_oom: | |
raise ValueError("Too many tokens. " + str(max_prompt_length*batch_size)+ " is greater than "+str(args.max_tokens_to_oom)) | |
# forward step. | |
forward_step = ForwardStep(model, batch_size, max_prompt_length) | |
# =================== | |
# Pre-allocate memory | |
# =================== | |
# Log probability of the sequence (prompt + generated tokens). | |
output_log_probs = None | |
output_log_probs_size = (batch_size, max_prompt_length - 1) | |
if mpu.is_pipeline_last_stage(): | |
output_log_probs = torch.empty(output_log_probs_size, | |
dtype=torch.float32, | |
device=torch.cuda.current_device()) | |
# ============= | |
# Run infernece | |
# ============= | |
with torch.no_grad(): | |
attention_mask, position_ids = _build_attention_mask_and_position_ids(tokens) | |
# logits will be meanigful only in the last pipeline stage. | |
logits = forward_step(tokens, position_ids, attention_mask) | |
if mpu.is_pipeline_last_stage(): | |
# Always the last stage should have an output. | |
assert logits is not None | |
log_probs = F.log_softmax(logits, dim=2) | |
# Pick the tokens that we need to get the log | |
# probabilities for. Note that next input token is | |
# the token which we selected in the current logits, | |
# so shift by 1. | |
indices = torch.unsqueeze(tokens[:, 1:], 2) | |
output_log_probs = torch.gather(log_probs, 2, indices).squeeze(2) | |
# ====================================== | |
# Broadcast to the first pipeline stage. | |
# ====================================== | |
output_log_probs = broadcast_from_last_to_first_pipeline_stage( | |
output_log_probs_size, torch.float32, output_log_probs) | |
return tokens, lengths, output_log_probs | |
def generate_tokens_probs_and_return_on_first_stage( | |
model, tokens, lengths, | |
return_output_log_probs=False, | |
top_k=0, top_p=0.0, top_p_decay=0.0, top_p_bound=0.0, | |
temperature=1.0, | |
use_eod_token_for_early_termination=True, | |
stop_on_double_eol=False, | |
stop_on_eol=False, | |
prevent_newline_after_colon=True | |
): | |
"""Main token generation function. | |
Arguments: | |
model: no interleaving is supported. | |
tokens: prompt tokens extended to be of size [b, max-sequence-length] | |
lengths: original prompt length, size: [b] | |
return_output_log_probs: flag to calculate the log probability of | |
the generated tokens. Note that the log probability is the one | |
from the original logit. | |
top_k, top_p: top-k and top-p sampling parameters. | |
Note that top-k = 1 is gready. Also, these paramters are | |
exclusive meaning that: | |
if top-k > 0 then we expect top-p=0. | |
if top-p > 0 then we check for top-k=0. | |
temperature: sampling temperature. | |
use_eod_token_for_early_termination: if True, do early termination if | |
all the sequences have reached this token. | |
prevent_newline_after_colon: if True, it will disable generating new line \n after : | |
Note: Outside of model, other parameters only need to be available on | |
rank 0. | |
Outputs: Note that is size is adjusted to a lower value than | |
max-sequence-length if generation is terminated early. | |
tokens: prompt and generated tokens. size: [b, :] | |
generated_sequence_lengths: total length (including prompt) of | |
the generated sequence. size: [b] | |
output_log_probs: log probability of the selected tokens. size: [b, s] | |
""" | |
args = get_args() | |
tokenizer = get_tokenizer() | |
batch_size = tokens.size(0) | |
min_prompt_length = lengths.min().item() | |
max_sequence_length = tokens.size(1) | |
if max_sequence_length > args.max_position_embeddings: | |
raise ValueError("Length of prompt + tokens_to_generate longer than allowed") | |
if max_sequence_length * batch_size > args.max_tokens_to_oom: | |
raise ValueError("Too many tokens. " + str(max_sequence_length*batch_size)+ " is greater than "+str(args.max_tokens_to_oom)) | |
# forward step. | |
forward_step = ForwardStep(model, batch_size, max_sequence_length) | |
# Added termination_id to support the case that we want to terminate the | |
# generation once that id is generated. | |
if hasattr(args, 'eos_id'): | |
termination_id = args.eos_id | |
else: | |
termination_id = tokenizer.eod | |
# =================== | |
# Pre-allocate memory | |
# =================== | |
# Log probability of the sequence (prompt + generated tokens). | |
output_log_probs = None | |
output_log_probs_size = (batch_size, max_sequence_length - 1) | |
# Lengths of generated seuquence including including prompts. | |
generated_sequence_lengths = None | |
if mpu.is_pipeline_last_stage(): | |
if return_output_log_probs: | |
output_log_probs = torch.empty(output_log_probs_size, | |
dtype=torch.float32, | |
device=torch.cuda.current_device()) | |
generated_sequence_lengths = torch.ones( | |
batch_size, dtype=torch.int64, | |
device=torch.cuda.current_device()) * max_sequence_length | |
# Whether we have reached a termination id. | |
is_generation_done = torch.zeros(batch_size, dtype=torch.uint8, | |
device=torch.cuda.current_device()) | |
# ============= | |
# Run infernece | |
# ============= | |
with torch.no_grad(): | |
attention_mask, position_ids = _build_attention_mask_and_position_ids( | |
tokens) | |
prev_context_length = 0 | |
for context_length in range(min_prompt_length, max_sequence_length): | |
# Pick the slice that we need to pass through the network. | |
tokens2use = tokens[:, prev_context_length:context_length] | |
positions2use = position_ids[:, prev_context_length:context_length] | |
attention_mask2use = attention_mask[ | |
..., prev_context_length:context_length, :context_length] | |
# logits will be meanigful only in the last pipeline stage. | |
logits = forward_step(tokens2use, positions2use, attention_mask2use) | |
logits = logits[0] | |
if mpu.is_pipeline_last_stage(): | |
if prevent_newline_after_colon: | |
logits[tokens2use[:, -1] == tokenizer.tokenize(':')[0], -1, tokenizer.tokenize('\n')[0]] = -1e10 # disable "\n" after ":" | |
# Always the last stage should have an output. | |
assert logits is not None | |
# Sample. | |
last_token_logits = logits[:, -1, :] | |
new_sample = sample(last_token_logits, | |
top_k=top_k, | |
top_p=top_p, | |
temperature=temperature, | |
vocab_size=tokenizer.vocab_size) | |
if top_p > 0.0 and top_p_decay > 0.0: | |
top_p = top_p * top_p_decay | |
if top_p_bound > 0.0: | |
top_p = max(top_p, top_p_bound) | |
# If a prompt length is smaller or equal th current context | |
# length, it means we have started generating tokens | |
started = lengths <= context_length | |
# Update the tokens. | |
tokens[started, context_length] = new_sample[started] | |
# Calculate the log probabilities. | |
if return_output_log_probs: | |
log_probs = F.log_softmax(logits, dim=2) | |
if return_output_log_probs: | |
# Pick the tokens that we need to get the log | |
# probabilities for. Note that next input token is | |
# the token which we selected in the current logits, | |
# so shift by 1. | |
indices = torch.unsqueeze( | |
tokens[ | |
:, | |
(prev_context_length + 1):(context_length + 1)], | |
2) | |
output_log_probs[:, | |
prev_context_length:context_length] = \ | |
torch.gather(log_probs, 2, indices).squeeze(2) | |
# Update the tokens on the first stage so the next input to | |
# the network is correct. | |
copy_from_last_to_first_pipeline_stage(batch_size, torch.int64, | |
tokens[:, context_length]) | |
# Update the context length for the next token generation. | |
prev_context_length = context_length | |
# Check if all the sequences have hit the termination_id. | |
done = None | |
if mpu.is_pipeline_last_stage(): | |
# TODO(rprenger) These stopping methods are tokenizer dependent | |
# instead tokenization should be in the inference loop so stop sequences can be used | |
if stop_on_double_eol: | |
hit_double_eol = (new_sample == 628).byte() & started.byte() | |
hit_two_eols = (new_sample == 198).byte() & (tokens[:, context_length-1] == 198).byte() & started.byte() | |
done_token = hit_double_eol | hit_two_eols | |
elif stop_on_eol: | |
hit_double_eol = (new_sample == 628).byte() & started.byte() | |
hit_eol = (new_sample == 198).byte() & started.byte() | |
done_token = hit_double_eol | hit_eol | |
else: | |
done_token = (new_sample == termination_id).byte() & \ | |
started.byte() | |
just_finished = (done_token & ~is_generation_done).bool() | |
generated_sequence_lengths[just_finished.view(-1)] = \ | |
context_length + 1 | |
is_generation_done = is_generation_done | done_token | |
done = torch.all(is_generation_done) | |
done = broadcast_from_last_pipeline_stage(1, torch.uint8, | |
tensor=done) | |
if use_eod_token_for_early_termination and done: | |
break | |
# =================================================== | |
# Update the length of based on max generated length. | |
# =================================================== | |
tokens = tokens[:, :(context_length + 1)] | |
if mpu.is_pipeline_last_stage(): | |
if return_output_log_probs: | |
output_log_probs = output_log_probs[:, :context_length] | |
# ====================================== | |
# Broadcast to the first pipeline stage. | |
# ====================================== | |
generated_sequence_lengths = broadcast_from_last_to_first_pipeline_stage( | |
batch_size, torch.int64, generated_sequence_lengths) | |
if return_output_log_probs: | |
output_log_probs_size = (batch_size, context_length) | |
output_log_probs = broadcast_from_last_to_first_pipeline_stage( | |
output_log_probs_size, torch.float32, output_log_probs) | |
return tokens, generated_sequence_lengths, output_log_probs | |
def beam_search_and_return_on_first_stage(model, tokens, lengths, beam_size, stop_token, num_return_gen, length_penalty, prevent_newline_after_colon=True): | |
args = get_args() | |
tokenizer = get_tokenizer() | |
batch_size = tokens.size(0) | |
assert(batch_size == 1) | |
prompt_length = lengths.item() | |
final_sequence_length = tokens.size(1) | |
final_sequence_length = min(final_sequence_length, args.max_position_embeddings) | |
# If the context is too big, this happens | |
if prompt_length >= final_sequence_length: | |
raise ValueError("context length + tokens_to_generate too large") | |
# forward step. | |
forward_step = ForwardStep(model, beam_size, final_sequence_length) | |
beam_hyp = BeamHypotheses(beam_size, length_penalty) | |
best_batches = None | |
done = torch.zeros(1, dtype=torch.uint8, device=torch.cuda.current_device()) | |
scores = torch.zeros(beam_size, | |
dtype=torch.float32, | |
device=torch.cuda.current_device()).unsqueeze(1) | |
scores_size_tensor, tokens_size_tensor = None, None | |
# ============= | |
# Run infernece | |
# ============= | |
with torch.no_grad(): | |
tokens = tokens.repeat(beam_size, 1) | |
attention_mask, position_ids = _build_attention_mask_and_position_ids(tokens) | |
prev_context_length = 0 | |
for context_length in range(prompt_length, final_sequence_length): | |
# Pick the slice that we need to pass through the network. | |
tokens2use = tokens[:, prev_context_length:context_length] | |
positions2use = position_ids[:, prev_context_length:context_length] | |
attention_mask2use = attention_mask[ | |
..., prev_context_length:context_length, :context_length] | |
# logits will be meanigful only in the last pipeline stage. | |
logits = forward_step(tokens2use, positions2use, attention_mask2use) | |
if mpu.is_pipeline_last_stage(): | |
if prevent_newline_after_colon: | |
logits[tokens2use[:, -1] == tokenizer.tokenize(':')[0], -1, tokenizer.tokenize('\n')[0]] = -1e10 # disable "\n" after ":" | |
vocab_size = logits.size(2) | |
log_probs = F.log_softmax(logits, dim=2) | |
new_scores = log_probs[:, -1, :] + scores | |
if context_length == prompt_length: # if this is the first one | |
sorted_scores, indices = torch.sort(new_scores[0,:], descending=True) | |
else: | |
sorted_scores, indices = torch.sort(new_scores.view(-1), descending=True) | |
best_beam_ids = torch.div(indices[: 2 * beam_size], vocab_size).trunc().long() | |
best_words = indices[:2 * beam_size] % vocab_size | |
best_scores = sorted_scores[: 2 * beam_size] | |
next_beams = [] | |
for beam_token_rank, (token_id, beam_score, beam_id) in enumerate( | |
zip(best_words, best_scores, best_beam_ids) | |
): | |
if token_id.item() == stop_token: | |
# if beam_token does not belong to top num_beams tokens, it should not be added | |
is_beam_token_worse_than_top_num_beams = beam_token_rank >= beam_size | |
if is_beam_token_worse_than_top_num_beams: | |
continue | |
beam_hyp.add( | |
tokens[beam_id].clone(), | |
beam_score, | |
context_length + 1 - prompt_length | |
) | |
else: | |
# add next predicted token since it is not eos_token | |
next_beams.append((token_id, beam_score, beam_id)) | |
if len(next_beams) == beam_size: | |
break | |
if beam_hyp.is_done(best_scores.max().item(), context_length + 1 - prompt_length): | |
done = torch.ones(1, dtype=torch.uint8, device=torch.cuda.current_device()) | |
best_batches = tokens.new([item[2] for item in next_beams]) | |
tokens = tokens[best_batches,:] | |
tokens[:, context_length] = tokens.new([item[0] for item in next_beams]) | |
scores = scores.new([item[1] for item in next_beams]).unsqueeze(1) | |
# torch.distributed.barrier() | |
done = broadcast_from_last_pipeline_stage(1, torch.uint8, done) | |
if done: | |
break | |
# Update the tokens on the first stage so the next input to | |
# the network is correct. | |
copy_from_last_to_first_pipeline_stage(tokens.size(), torch.int64, | |
tokens) | |
# set inference key values to make it consistent with best beam index | |
best_batches = broadcast_from_last_pipeline_stage(beam_size, torch.int64, best_batches) | |
forward_step.inference_params.swap_key_value_dict(best_batches) | |
# Update the context length for the next token generation. | |
prev_context_length = context_length | |
if mpu.is_pipeline_last_stage(): | |
# if cannot find stop token, add open beams to hyps | |
if not done: | |
for beam_id in range(beam_size): | |
beam_hyp.add(tokens[beam_id].clone(), scores[beam_id].squeeze(), context_length + 1 - prompt_length) | |
# rank based on scores | |
sorted_hyps = sorted(beam_hyp.beams, key=lambda x: x[0], reverse=True) | |
num_return_gen = min(num_return_gen, len(sorted_hyps)) | |
scores = [sorted_hyps[i][0] for i in range(num_return_gen)] | |
tokens = [sorted_hyps[i][1] for i in range(num_return_gen)] | |
scores = torch.stack(scores, dim=0) | |
tokens = torch.stack(tokens, dim=0) | |
scores_size_tensor = torch.tensor(scores.shape, dtype=torch.int64, device=torch.cuda.current_device()) | |
tokens_size_tensor = torch.tensor(tokens.shape, dtype=torch.int64, device=torch.cuda.current_device()) | |
scores_size_tensor = broadcast_from_last_pipeline_stage(1, torch.int64, scores_size_tensor) | |
tokens_size_tensor = broadcast_from_last_pipeline_stage(2, torch.int64, tokens_size_tensor) | |
scores = broadcast_from_last_to_first_pipeline_stage(tuple(scores_size_tensor), torch.float32, scores) | |
tokens = broadcast_from_last_to_first_pipeline_stage(tuple(tokens_size_tensor), torch.int64, tokens) | |
return tokens, scores | |
def _build_attention_mask_and_position_ids(tokens): | |
"""Build the attention mask and postition ids for the input tokens.""" | |
# Since we are not interested in loss-mask and reset attention/position | |
# is also False, eod_token is not used so it is safe to set it to None. | |
attention_mask, _, position_ids = get_ltor_masks_and_position_ids( | |
data=tokens, | |
eod_token=None, | |
reset_position_ids=False, | |
reset_attention_mask=False, | |
eod_mask_loss=False) | |
return attention_mask, position_ids | |