peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/megatron
/text_generation
/tokenization.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""Tokenization utilities.""" | |
import torch | |
from megatron import get_tokenizer, get_args | |
from .communication import broadcast_int_list, broadcast_tensor | |
def detokenize_generations(tokens_gpu_tensor, | |
lengths_gpu_tensor, | |
return_segments): | |
"""Detokenize the generated tokens.""" | |
tokenizer = get_tokenizer() | |
args = get_args() | |
prompts_plus_generations = [] | |
if return_segments: | |
prompts_plus_generations_segments = [] | |
tokens = tokens_gpu_tensor.cpu().numpy().tolist() | |
lengths = lengths_gpu_tensor.cpu().numpy().tolist() | |
for sequence_tokens, length in zip(tokens, lengths): | |
sequence_tokens = sequence_tokens[:length] | |
prompts_plus_generations.append( | |
tokenizer.detokenize(sequence_tokens)) | |
if return_segments: | |
words = [] | |
for token in sequence_tokens: | |
if args.tokenizer_type in ['SentencePieceTokenizer', | |
'GPTSentencePieceTokenizer']: | |
word = tokenizer.decoder[token] | |
elif args.tokenizer_type == 'NullTokenizer': | |
word = str(token) | |
else: | |
word = tokenizer.tokenizer.decoder[token] | |
word = bytearray( | |
[tokenizer.tokenizer.byte_decoder[c] for c in word]).decode( | |
'utf-8', errors='replace') | |
words.append(word) | |
prompts_plus_generations_segments.append(words) | |
if return_segments: | |
return tokens, prompts_plus_generations, \ | |
prompts_plus_generations_segments | |
return tokens, prompts_plus_generations | |
def tokenize_prompts(prompts=None, tokens_to_generate=None, | |
add_BOS=None, rank=0): | |
"""Tokenize prompts and make them avaiable on all ranks.""" | |
# On all ranks set to None so we can pass them to functions | |
sizes_list = None | |
prompts_tokens_cuda_long_tensor = None | |
prompts_length_cuda_long_tensor = None | |
# On the specified rank, build the above. | |
if torch.distributed.get_rank() == rank: | |
assert prompts is not None | |
assert tokens_to_generate is not None | |
# Tensor of tokens padded and their unpadded length. | |
prompts_tokens_cuda_long_tensor, prompts_length_cuda_long_tensor = \ | |
_tokenize_prompts_and_batch(prompts, tokens_to_generate, add_BOS) | |
# We need the sizes of these tensors for the boradcast | |
sizes_list = [prompts_tokens_cuda_long_tensor.size(0), # Batch size | |
prompts_tokens_cuda_long_tensor.size(1)] # Sequence lenght | |
# First, broadcast the sizes. | |
sizes_tensor = broadcast_int_list(2, int_list=sizes_list, rank=rank) | |
# Now that we have the sizes, we can boradcast the tokens | |
# and length tensors. | |
sizes = sizes_tensor.tolist() | |
prompts_tokens_cuda_long_tensor = broadcast_tensor( | |
sizes, torch.int64, tensor=prompts_tokens_cuda_long_tensor, rank=rank) | |
prompts_length_cuda_long_tensor = broadcast_tensor( | |
sizes[0], torch.int64, tensor=prompts_length_cuda_long_tensor, | |
rank=rank) | |
return prompts_tokens_cuda_long_tensor, prompts_length_cuda_long_tensor | |
def _tokenize_prompts_and_batch(prompts, tokens_to_generate, add_BOS): | |
"""Given a set of prompts and number of tokens to generate: | |
- tokenize prompts | |
- set the sequence length to be the max of length of prompts | |
plus the number of tokens we would like to generate | |
- pad all the sequences to this length so we can convert them | |
into a 2D tensor. | |
""" | |
# Tokenize all the prompts. | |
tokenizer = get_tokenizer() | |
if add_BOS: | |
prompts_tokens = [[tokenizer.eod] + tokenizer.tokenize(prompt) | |
for prompt in prompts] | |
else: | |
prompts_tokens = [tokenizer.tokenize(prompt) for prompt in prompts] | |
# Now we have a list of list of tokens which each list has a different | |
# size. We want to extend this list to: | |
# - incorporate the tokens that need to be generated | |
# - make all the sequences equal length. | |
# Get the prompts length. | |
prompts_length = [len(prompt_tokens) for prompt_tokens in prompts_tokens] | |
# Get the max prompts length. | |
max_prompt_len = max(prompts_length) | |
# Number of tokens in the each sample of the batch. | |
samples_length = max_prompt_len + tokens_to_generate | |
# Now update the list of list to be of the same size: samples_length. | |
for prompt_tokens, prompt_length in zip(prompts_tokens, prompts_length): | |
padding_size = samples_length - prompt_length | |
prompt_tokens.extend([tokenizer.eod] * padding_size) | |
# Now we are in a structured format, we can convert to tensors. | |
prompts_tokens_tensor = torch.cuda.LongTensor(prompts_tokens) | |
prompts_length_tensor = torch.cuda.LongTensor(prompts_length) | |
return prompts_tokens_tensor, prompts_length_tensor | |