peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/megatron
/text_generation_server.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
import datetime | |
import torch | |
import json | |
import threading | |
from flask import Flask, request, jsonify, current_app | |
from flask_restful import Resource, Api | |
from megatron import get_args | |
from megatron.text_generation import generate_and_post_process | |
from megatron.text_generation import beam_search_and_post_process | |
GENERATE_NUM = 0 | |
BEAM_NUM = 1 | |
lock = threading.Lock() | |
class MegatronGenerate(Resource): | |
def __init__(self, model): | |
self.model = model | |
def send_do_generate(): | |
choice = torch.cuda.LongTensor([GENERATE_NUM]) | |
torch.distributed.broadcast(choice, 0) | |
def send_do_beam_search(): | |
choice = torch.cuda.LongTensor([BEAM_NUM]) | |
torch.distributed.broadcast(choice, 0) | |
def put(self): | |
args = get_args() | |
if not "prompts" in request.get_json(): | |
return "prompts argument required", 400 | |
if "max_len" in request.get_json(): | |
return "max_len is no longer used. Replace with tokens_to_generate", 400 | |
if "sentences" in request.get_json(): | |
return "sentences is no longer used. Replace with prompts", 400 | |
prompts = request.get_json()["prompts"] | |
if not isinstance(prompts, list): | |
return "prompts is not a list of strings", 400 | |
if len(prompts) == 0: | |
return "prompts is empty", 400 | |
if len(prompts) > 128: | |
return "Maximum number of prompts is 128", 400 | |
tokens_to_generate = 64 # Choosing hopefully sane default. Full sequence is slow | |
if "tokens_to_generate" in request.get_json(): | |
tokens_to_generate = request.get_json()["tokens_to_generate"] | |
if not isinstance(tokens_to_generate, int): | |
return "tokens_to_generate must be an integer greater than 0" | |
if tokens_to_generate < 0: | |
return "tokens_to_generate must be an integer greater than or equal to 0" | |
logprobs = False | |
if "logprobs" in request.get_json(): | |
logprobs = request.get_json()["logprobs"] | |
if not isinstance(logprobs, bool): | |
return "logprobs must be a boolean value" | |
if tokens_to_generate == 0 and not logprobs: | |
return "tokens_to_generate=0 implies logprobs should be True" | |
temperature = 1.0 | |
if "temperature" in request.get_json(): | |
temperature = request.get_json()["temperature"] | |
if not (type(temperature) == int or type(temperature) == float): | |
return "temperature must be a positive number less than or equal to 100.0" | |
if not (0.0 < temperature <= 100.0): | |
return "temperature must be a positive number less than or equal to 100.0" | |
top_k = 0.0 | |
if "top_k" in request.get_json(): | |
top_k = request.get_json()["top_k"] | |
if not (type(top_k) == int): | |
return "top_k must be an integer equal to or greater than 0 and less than or equal to 1000" | |
if not (0 <= top_k <= 1000): | |
return "top_k must be equal to or greater than 0 and less than or equal to 1000" | |
top_p = 0.0 | |
if "top_p" in request.get_json(): | |
top_p = request.get_json()["top_p"] | |
if not (type(top_p) == float): | |
return "top_p must be a positive float less than or equal to 1.0" | |
if top_p > 0.0 and top_k > 0.0: | |
return "cannot set both top-k and top-p samplings." | |
if not (0 <= top_p <= 1.0): | |
return "top_p must be less than or equal to 1.0" | |
top_p_decay = 0.0 | |
if "top_p_decay" in request.get_json(): | |
top_p_decay = request.get_json()["top_p_decay"] | |
if not (type(top_p_decay) == float): | |
return "top_p_decay must be a positive float less than or equal to 1.0" | |
if top_p == 0.0: | |
return "top_p_decay cannot be set without top_p" | |
if not (0 <= top_p_decay <= 1.0): | |
return "top_p_decay must be less than or equal to 1.0" | |
top_p_bound = 0.0 | |
if "top_p_bound" in request.get_json(): | |
top_p_bound = request.get_json()["top_p_bound"] | |
if not (type(top_p_bound) == float): | |
return "top_p_bound must be a positive float less than or equal to top_p" | |
if top_p == 0.0: | |
return "top_p_bound cannot be set without top_p" | |
if not (0.0 < top_p_bound <= top_p): | |
return "top_p_bound must be greater than 0 and less than top_p" | |
add_BOS = False | |
if "add_BOS" in request.get_json(): | |
add_BOS = request.get_json()["add_BOS"] | |
if not isinstance(add_BOS, bool): | |
return "add_BOS must be a boolean value" | |
if any([len(prompt) == 0 for prompt in prompts]) and not add_BOS: | |
return "Empty prompts require add_BOS=true" | |
stop_on_double_eol = False | |
if "stop_on_double_eol" in request.get_json(): | |
stop_on_double_eol = request.get_json()["stop_on_double_eol"] | |
if not isinstance(stop_on_double_eol, bool): | |
return "stop_on_double_eol must be a boolean value" | |
stop_on_eol = False | |
if "stop_on_eol" in request.get_json(): | |
stop_on_eol = request.get_json()["stop_on_eol"] | |
if not isinstance(stop_on_eol, bool): | |
return "stop_on_eol must be a boolean value" | |
prevent_newline_after_colon = False | |
if "prevent_newline_after_colon" in request.get_json(): | |
prevent_newline_after_colon = request.get_json()["prevent_newline_after_colon"] | |
if not isinstance(prevent_newline_after_colon, bool): | |
return "prevent_newline_after_colon must be a boolean value" | |
random_seed = -1 | |
if "random_seed" in request.get_json(): | |
random_seed = request.get_json()["random_seed"] | |
if not isinstance(random_seed, int): | |
return "random_seed must be integer" | |
if random_seed < 0: | |
return "random_seed must be a positive integer" | |
no_log = False | |
if "no_log" in request.get_json(): | |
no_log = request.get_json()["no_log"] | |
if not isinstance(no_log, bool): | |
return "no_log must be a boolean value" | |
beam_width = None | |
if "beam_width" in request.get_json(): | |
beam_width = request.get_json()["beam_width"] | |
if not isinstance(beam_width, int): | |
return "beam_width must be integer" | |
if beam_width < 1: | |
return "beam_width must be an integer > 1" | |
if len(prompts) > 1: | |
return "When doing beam_search, batch size must be 1" | |
stop_token=50256 | |
if "stop_token" in request.get_json(): | |
stop_token = request.get_json()["stop_token"] | |
if not isinstance(stop_token, int): | |
return "stop_token must be an integer" | |
length_penalty = 1 | |
if "length_penalty" in request.get_json(): | |
length_penalty = request.get_json()["length_penalty"] | |
if not isinstance(length_penalty, float): | |
return "length_penalty must be a float" | |
with lock: # Need to get lock to keep multiple threads from hitting code | |
if not no_log: | |
print("request IP: " + str(request.remote_addr)) | |
print(json.dumps(request.get_json()),flush=True) | |
print("start time: ", datetime.datetime.now()) | |
try: | |
if beam_width is not None: | |
MegatronGenerate.send_do_beam_search() # Tell other ranks we're doing beam_search | |
response, response_seg, response_scores = \ | |
beam_search_and_post_process( | |
self.model, | |
prompts=prompts, | |
tokens_to_generate=tokens_to_generate, | |
beam_size = beam_width, | |
add_BOS=add_BOS, | |
stop_token=stop_token, | |
num_return_gen=beam_width, # Returning whole beam | |
length_penalty=length_penalty, | |
prevent_newline_after_colon=prevent_newline_after_colon | |
) | |
return jsonify({"text": response, | |
"segments": response_seg, | |
"scores": response_scores}) | |
else: | |
MegatronGenerate.send_do_generate() # Tell other ranks we're doing generate | |
response, response_seg, response_logprobs, _ = \ | |
generate_and_post_process( | |
self.model, | |
prompts=prompts, | |
tokens_to_generate=tokens_to_generate, | |
return_output_log_probs=logprobs, | |
top_k_sampling=top_k, | |
top_p_sampling=top_p, | |
top_p_decay=top_p_decay, | |
top_p_bound=top_p_bound, | |
temperature=temperature, | |
add_BOS=add_BOS, | |
use_eod_token_for_early_termination=True, | |
stop_on_double_eol=stop_on_double_eol, | |
stop_on_eol=stop_on_eol, | |
prevent_newline_after_colon=prevent_newline_after_colon, | |
random_seed=random_seed) | |
return jsonify({"text": response, | |
"segments": response_seg, | |
"logprobs": response_logprobs}) | |
except ValueError as ve: | |
return ve.args[0] | |
print("end time: ", datetime.datetime.now()) | |
class MegatronServer(object): | |
def __init__(self, model): | |
self.app = Flask(__name__, static_url_path='') | |
api = Api(self.app) | |
api.add_resource(MegatronGenerate, '/api', resource_class_args=[model]) | |
def run(self, url): | |
self.app.run(url, threaded=True, debug=False) | |