peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/megatron
/text_generation_utils.py
# coding=utf-8 | |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Utilities for generating text.""" | |
import time | |
import copy | |
import json | |
import os | |
import time | |
import torch | |
import torch.nn.functional as F | |
from megatron import get_args | |
from megatron import get_tokenizer | |
from megatron.core import mpu | |
from megatron.utils import get_ltor_masks_and_position_ids, unwrap_model | |
from megatron.p2p_communication import recv_forward, send_forward | |
# These are needed to unwrap the model, would be nice to put these in megatron.utils if possible? | |
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP | |
from megatron.model import DistributedDataParallel as LocalDDP | |
from megatron.model import Float16Module | |
from deepspeed.accelerator import get_accelerator | |
def get_batch(context_tokens): | |
"""Generate batch from context tokens.""" | |
args = get_args() | |
tokenizer = get_tokenizer() | |
# Move to GPU. | |
tokens = context_tokens.view(args.micro_batch_size, -1).contiguous().to(get_accelerator().device_name()) | |
# Get the attention mask and postition ids. | |
attention_mask, _, position_ids = get_ltor_masks_and_position_ids( | |
tokens, | |
tokenizer.eod, | |
args.reset_position_ids, | |
args.reset_attention_mask, | |
args.eod_mask_loss) | |
return tokens, attention_mask, position_ids | |
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): | |
""" This function has been mostly taken from huggingface conversational | |
ai code at | |
https://medium.com/huggingface/how-to-build-a-state-of-the-art- | |
conversational-ai-with-transfer-learning-2d818ac26313 """ | |
if top_k > 0: | |
# Remove all tokens with a probability less than the | |
# last token of the top-k | |
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] | |
logits[indices_to_remove] = filter_value | |
if top_p > 0.0: | |
# Cconvert to 1D | |
sorted_logits, sorted_indices = torch.sort( | |
logits, descending=True, dim=-1) | |
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), | |
dim=-1) | |
# Remove tokens with cumulative probability above the threshold | |
sorted_indices_to_remove = cumulative_probs > top_p | |
# Shift the indices to the right to keep also the first token | |
# above the threshold | |
sorted_indices_to_remove[..., 1:] \ | |
= sorted_indices_to_remove[..., :-1].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
for i in range(sorted_indices.size(0)): | |
indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]] | |
logits[i][indices_to_remove] = filter_value | |
return logits | |
def generate_samples_input_from_file(model): | |
args = get_args() | |
tokenizer = get_tokenizer() | |
# Read the sample file and open the output file. | |
assert args.sample_input_file is not None, \ | |
'sample input file is not provided.' | |
if mpu.is_pipeline_first_stage() and mpu.get_tensor_model_parallel_rank() == 0: | |
fname = open(args.sample_input_file, "r") | |
all_raw_text = fname.readlines() | |
input_count = len(all_raw_text) | |
input_pos = 0 | |
if args.sample_output_file is None: | |
sample_output_file = args.sample_input_file + ".out" | |
print('`sample-output-file` not specified, setting ' | |
'it to {}'.format(sample_output_file)) | |
else: | |
sample_output_file = args.sample_output_file | |
fname_out = open(sample_output_file, "w+") | |
context_count = 0 | |
model.eval() | |
with torch.no_grad(): | |
while True: | |
terminate_runs = 0 | |
raw_text_len = 0 | |
if mpu.is_pipeline_first_stage() \ | |
and mpu.get_tensor_model_parallel_rank() == 0: | |
raw_text = all_raw_text[input_pos] | |
input_pos += 1 | |
if input_pos == input_count: | |
raw_text = "stop" | |
raw_text_len = len(raw_text) | |
if "stop" in raw_text: | |
terminate_runs = 1 | |
else: | |
context_tokens = tokenizer.tokenize(raw_text) | |
context_length = len(context_tokens) | |
if context_length >= (args.seq_length // 2): | |
print("\nContext length", context_length, | |
"\nPlease give smaller context (half of the " | |
"sequence length)!", flush=True) | |
continue | |
else: | |
context_tokens = tokenizer.tokenize("EMPTY TEXT") | |
context_length = 0 | |
input_info = [terminate_runs, raw_text_len, context_length] | |
input_info_tensor = get_accelerator().LongTensor(input_info) | |
torch.distributed.all_reduce(input_info_tensor, | |
group=mpu.get_model_parallel_group()) | |
terminate_runs = input_info_tensor[0].item() | |
raw_text_len = input_info_tensor[1].item() | |
context_length = input_info_tensor[2].item() | |
if terminate_runs == 1: | |
return | |
# For pipeline parallel we send context tokens to other stages | |
# so they get the lengths correct | |
if mpu.get_tensor_model_parallel_rank() == 0 \ | |
and args.pipeline_model_parallel_size > 1: | |
if mpu.is_pipeline_first_stage(): | |
src = mpu.get_pipeline_model_parallel_first_rank() | |
group = mpu.get_pipeline_model_parallel_group() | |
context_tokens_tensor = get_accelerator().LongTensor(context_tokens) | |
torch.distributed.broadcast(context_tokens_tensor, src, group) | |
else: | |
src = mpu.get_pipeline_model_parallel_first_rank() | |
group = mpu.get_pipeline_model_parallel_group() | |
context_tokens_tensor = torch.empty(context_length, | |
dtype=torch.int64, | |
device=get_accelerator().current_device_name()) | |
torch.distributed.broadcast(context_tokens_tensor, src, group) | |
context_tokens = context_tokens_tensor.cpu().numpy().tolist() | |
token_stream = get_token_stream(model, [context_tokens]) | |
for _, decode_tokens in enumerate(token_stream): | |
pass | |
if mpu.get_tensor_model_parallel_rank() == 0: | |
if mpu.is_pipeline_first_stage(): | |
os.system('clear') | |
print("\nContext:", raw_text, flush=True) | |
fname_out.write("\nContext:") | |
fname_out.write(raw_text) | |
decode_tokens, _ = decode_tokens | |
decode_tokens = decode_tokens[0].cpu().numpy().tolist() | |
trim_decode_tokens = tokenizer.detokenize( | |
decode_tokens)[raw_text_len:] | |
print("\nMegatron-LM:", trim_decode_tokens, flush=True) | |
fname_out.write("\n\nMegatron-LM:") | |
fname_out.write(trim_decode_tokens) | |
fname_out.write("\n") | |
raw_text = None | |
context_count += 1 | |
# We added this function to support the tasks evaluation such as squad | |
# and drop in the https://github.com/EleutherAI/lm-evaluation-harness | |
# codebase. The lm-evaluation-harness code can now call this function | |
# similar to their current generate function call used for gpt style models. | |
def generate_samples_eval(model, context, max_gen_length, eos_token_id): | |
# Generate samples for lm evaluation | |
# NEED TO THINK ABOUT eos token | |
args = get_args() | |
tokenizer = get_tokenizer() | |
raw_text_len = len(context) | |
model.eval() | |
context_tokens = tokenizer.tokenize(context) | |
args.out_seq_length = max_gen_length + len(context_tokens) | |
args.eos_id = eos_token_id | |
with torch.no_grad(): | |
token_stream = get_token_stream(model, [context_tokens]) | |
for counter, decode_tokens in enumerate(token_stream): | |
if counter == args.out_seq_length: | |
break | |
decode_tokens, _ = decode_tokens | |
decode_tokens = decode_tokens[0].cpu().numpy().tolist() | |
trim_decode_tokens = tokenizer.detokenize( | |
decode_tokens)[raw_text_len:] | |
return trim_decode_tokens | |
def generate_samples_interactive(model, print_frequency=24): | |
args = get_args() | |
tokenizer = get_tokenizer() | |
context_count = 0 | |
model.eval() | |
with torch.no_grad(): | |
while True: | |
terminate_runs = 0 | |
raw_text_len = 0 | |
if mpu.is_pipeline_first_stage() \ | |
and mpu.get_tensor_model_parallel_rank() == 0: | |
os.system('clear') | |
raw_text = input("\nContext prompt (stop to exit) >>> ") | |
while not raw_text: | |
print('Prompt should not be empty!') | |
raw_text = input("\nContext prompt (stop to exit) >>> ") | |
raw_text_len = len(raw_text) | |
if "stop" in raw_text: | |
terminate_runs = 1 | |
else: | |
context_tokens = tokenizer.tokenize(raw_text) | |
context_length = len(context_tokens) | |
if context_length >= (args.seq_length // 2): | |
print("\nContext length", context_length, | |
"\nPlease give smaller context (half of the " | |
"sequence length)!", flush=True) | |
continue | |
else: | |
context_tokens = tokenizer.tokenize("EMPTY TEXT") | |
context_length = 0 | |
input_info = [terminate_runs, raw_text_len, context_length] | |
input_info_tensor = get_accelerator().LongTensor(input_info) | |
torch.distributed.all_reduce(input_info_tensor, | |
group=mpu.get_model_parallel_group()) | |
terminate_runs = input_info_tensor[0].item() | |
raw_text_len = input_info_tensor[1].item() | |
context_length = input_info_tensor[2].item() | |
if terminate_runs == 1: | |
return | |
# For pipeline parallel we send context tokens to other stages | |
# so they get the lengths correct | |
if mpu.get_tensor_model_parallel_rank() == 0 \ | |
and args.pipeline_model_parallel_size > 1: | |
if mpu.is_pipeline_first_stage(): | |
src = mpu.get_pipeline_model_parallel_first_rank() | |
group = mpu.get_pipeline_model_parallel_group() | |
context_tokens_tensor = get_accelerator().LongTensor(context_tokens) | |
torch.distributed.broadcast(context_tokens_tensor, src, group) | |
else: | |
src = mpu.get_pipeline_model_parallel_first_rank() | |
group = mpu.get_pipeline_model_parallel_group() | |
context_tokens_tensor = torch.empty(context_length, | |
dtype=torch.int64, | |
device=torch.device(get_accelerator().device_name())) | |
torch.distributed.broadcast(context_tokens_tensor, src, group) | |
context_tokens = context_tokens_tensor.cpu().numpy().tolist() | |
token_stream = get_token_stream(model, [context_tokens]) | |
for counter, decode_tokens in enumerate(token_stream): | |
if counter % print_frequency != 0 \ | |
or mpu.get_tensor_model_parallel_rank() != 0 \ | |
or not mpu.is_pipeline_first_stage(): | |
continue | |
os.system('clear') | |
print("\nContext:", raw_text, flush=True) | |
decode_tokens, _ = decode_tokens | |
decode_tokens = decode_tokens[0].cpu().numpy().tolist() | |
trim_decode_tokens = tokenizer.detokenize( | |
decode_tokens)[raw_text_len:] | |
print("\nMegatron-LM:", trim_decode_tokens, flush=True) | |
if mpu.is_pipeline_first_stage() \ | |
and mpu.get_tensor_model_parallel_rank() == 0: | |
os.system('clear') | |
print("\nContext:", raw_text, flush=True) | |
if not isinstance(decode_tokens, list): | |
decode_tokens, _ = decode_tokens | |
decode_tokens = decode_tokens[0].cpu().numpy().tolist() | |
trim_decode_tokens = tokenizer.detokenize( | |
decode_tokens)[raw_text_len:] | |
print("\nMegatron-LM:", trim_decode_tokens, flush=True) | |
input("\nPress Enter to continue >>>") | |
raw_text = None | |
context_count += 1 | |
def generate_samples_unconditional(model, latencies=[], model_latencies=[], single_token_latency=[]): | |
args = get_args() | |
tokenizer = get_tokenizer() | |
num_samples = args.num_samples | |
context_tokens = [[tokenizer.eod] | |
for _ in range(args.micro_batch_size)] | |
ctr = 0 | |
while True: | |
get_accelerator().synchronize() | |
start_time = time.time() | |
for token_stream in get_token_stream(model, | |
copy.deepcopy(context_tokens), model_latencies=model_latencies, single_token_latency=single_token_latency): | |
pass | |
get_accelerator().synchronize() | |
latencies.append(time.time() - start_time) | |
start_time = time.time() | |
if mpu.is_pipeline_last_stage() and \ | |
mpu.get_tensor_model_parallel_rank() == 0: | |
#if ctr % args.log_interval == 0: | |
# print('Avg s/batch:', | |
# (time.time() - start_time) / min(args.log_interval, ctr + 1)) | |
# start_time = time.time() | |
length = len(token_stream) | |
token_batch = token_stream[0].cpu().numpy().tolist() | |
length_batch = token_stream[1].cpu().numpy().tolist() | |
assert len(length_batch) == args.micro_batch_size | |
for tokens, length in zip(token_batch, length_batch): | |
tokens = tokens[1:length - 1] | |
text = tokenizer.detokenize(tokens) | |
is_finished = length < args.seq_length - 1 | |
datum = {'text': text, 'length': length - 1, 'finished': is_finished} | |
yield datum | |
ctr += 1 | |
if ctr >= num_samples: | |
break | |
else: | |
for _ in range(args.micro_batch_size): | |
yield None | |
ctr += 1 | |
if ctr >= num_samples: | |
break | |
if ctr >= num_samples: | |
break | |
def generate_and_write_samples_unconditional(model, latencies=[], single_token_latency=[], model_latencies=[]): | |
args = get_args() | |
assert args.genfile is not None | |
with open(args.genfile, 'w') as f: | |
for datum in generate_samples_unconditional(model, latencies=latencies, model_latencies=model_latencies, single_token_latency=single_token_latency): | |
if mpu.is_pipeline_last_stage() and \ | |
mpu.get_tensor_model_parallel_rank() == 0: | |
f.write(json.dumps(datum) + '\n') | |
def pad_batch(batch, pad_id, args): | |
context_lengths = [] | |
for tokens in batch: | |
context_length = len(tokens) | |
if context_length < args.seq_length: | |
tokens.extend([pad_id] * (args.seq_length - context_length)) | |
context_lengths.append(context_length) | |
return batch, context_lengths | |
def get_token_stream(model, context_tokens, model_latencies=[], single_token_latency=[]): | |
args = get_args() | |
tokenizer = get_tokenizer() | |
context_tokens, context_lengths = pad_batch(context_tokens, | |
tokenizer.eod, args) | |
context_tokens_tensor = get_accelerator().LongTensor(context_tokens) | |
context_length_tensor = get_accelerator().LongTensor(context_lengths) | |
torch.distributed.broadcast(context_length_tensor, | |
mpu.get_tensor_model_parallel_src_rank(), | |
group=mpu.get_tensor_model_parallel_group()) | |
torch.distributed.broadcast(context_tokens_tensor, | |
mpu.get_tensor_model_parallel_src_rank(), | |
group=mpu.get_tensor_model_parallel_group()) | |
context_length = context_length_tensor.min().item() | |
tokens, attention_mask, position_ids = get_batch(context_tokens_tensor) | |
batch_token_iterator = sample_sequence_batch(model, context_tokens_tensor, | |
context_length_tensor, | |
attention_mask, position_ids, model_latencies=model_latencies) | |
count = 0 | |
t0=time.time() | |
for tokens, lengths in batch_token_iterator: | |
if count > 1: | |
get_accelerator().synchronize() | |
t_elapsed = time.time() - t0 | |
single_token_latency.append(t_elapsed) | |
get_accelerator().synchronize() | |
t0=time.time() | |
count+=1 | |
context_length += 1 | |
if tokens is not None: | |
yield tokens[:, :context_length], lengths | |
else: | |
yield None, None | |
def switch(val1, val2, boolean): | |
boolean = boolean.type_as(val1) | |
return (1 - boolean) * val1 + boolean * val2 | |
def forward_step(model, tokens, position_ids, attention_mask, tokentype_ids, | |
layer_past=None, get_key_value=None, | |
forward_method_parallel_output=None, model_latencies=[]): | |
# Hidden size changes when not using recompute, need to tell p2p_communicate | |
# functions the correct size | |
get_accelerator().synchronize() | |
t0 = time.time() | |
args = get_args() | |
orig_seq_length = args.seq_length | |
args.seq_length = tokens.shape[1] | |
input_tensor = recv_forward() | |
# Forward pass through the model. | |
unwrapped_model = unwrap_model( | |
model, (torchDDP, LocalDDP, Float16Module)) | |
if hasattr(unwrapped_model, 'set_input_tensor'): | |
unwrapped_model.set_input_tensor(input_tensor) | |
elif args.deepspeed or args.ds_inference: | |
unwrapped_model.module.set_input_tensor(input_tensor) | |
output_tensor = model(tokens, position_ids, attention_mask, | |
tokentype_ids=tokentype_ids, | |
layer_past=layer_past, | |
get_key_value=get_key_value, | |
forward_method_parallel_output=forward_method_parallel_output) | |
if get_key_value: | |
output_tensor, layer_past = output_tensor | |
send_forward(output_tensor) | |
args.seq_length = orig_seq_length | |
get_accelerator().synchronize() | |
model_latencies.append(time.time()-t0) | |
if get_key_value: | |
return output_tensor, layer_past | |
return output_tensor | |
def sample_sequence_batch(model, context_tokens, context_lengths, | |
attention_mask, position_ids, | |
maxlen=None, type_ids=None, model_latencies=[]): | |
args = get_args() | |
tokenizer = get_tokenizer() | |
model.eval() | |
with torch.no_grad(): | |
context_length = context_lengths.min().item() | |
# added eos_id to support the function generate_samples_eval that passes | |
# eos_id as an argument and needs termination when that id id found. | |
if hasattr(args, 'eos_id'): | |
eos_id = args.eos_id | |
else: | |
eos_id = tokenizer.eod | |
counter = 0 | |
org_context_length = context_length | |
layer_past = None | |
batch_size = context_tokens.size(0) | |
is_done = torch.zeros([batch_size]).byte().to(get_accelerator().device_name()) | |
tokens = context_tokens | |
if maxlen is None: | |
maxlen = args.seq_length - 1 | |
if maxlen > (org_context_length + args.out_seq_length): | |
maxlen = org_context_length + args.out_seq_length | |
lengths = torch.ones([batch_size]).long().to(get_accelerator().device_name()) * maxlen | |
while context_length <= (maxlen): | |
if args.recompute: | |
output = forward_step(model, tokens, | |
position_ids, | |
attention_mask, | |
tokentype_ids=type_ids, | |
forward_method_parallel_output=False) | |
if mpu.is_pipeline_last_stage(): | |
assert output is not None | |
logits = output[:, context_length - 1, :] | |
else: | |
types2use = None | |
if counter == 0: | |
tokens2use = tokens[:, :context_length] | |
positions2use = position_ids[:, :context_length] | |
if type_ids is not None: | |
types2use = type_ids[:, :context_length] | |
else: | |
tokens2use = tokens[:, context_length - 1].view( | |
batch_size, -1) | |
positions2use = position_ids[:, context_length - 1].view( | |
batch_size, -1) | |
if type_ids is not None: | |
types2use = type_ids[:, context_length - 1].view( | |
batch_size, -1) | |
output, layer_past = forward_step(model, tokens2use, | |
positions2use, | |
attention_mask, | |
layer_past=layer_past, | |
get_key_value=True, | |
tokentype_ids=types2use, | |
forward_method_parallel_output=False, model_latencies=model_latencies) | |
if mpu.is_pipeline_last_stage(): | |
assert output is not None | |
logits = output[:, -1].view(batch_size, -1).contiguous() | |
if mpu.is_pipeline_last_stage(): | |
if args.greedy: | |
prev = torch.argmax(logits, dim=-1).view(-1) | |
else: | |
logits = logits.float() | |
logits /= args.temperature | |
logits = top_k_logits(logits, top_k=args.top_k, | |
top_p=args.top_p) | |
log_probs = F.softmax(logits, dim=-1) | |
prev = torch.multinomial(log_probs, num_samples=1).view(-1) | |
started = context_lengths <= context_length | |
new_tokens = switch( | |
tokens[:, context_length].view(-1), prev, started) | |
tokens[:, context_length] = new_tokens | |
src = mpu.get_pipeline_model_parallel_last_rank() | |
group = mpu.get_embedding_group() | |
torch.distributed.broadcast(new_tokens, src, group) | |
done_token = (prev == eos_id).byte() & started.byte() | |
just_finished = (done_token & ~is_done).bool() | |
lengths[just_finished.view(-1)] = context_length | |
is_done = is_done | done_token | |
done = torch.all(is_done) | |
src = mpu.get_pipeline_model_parallel_last_rank() | |
group = mpu.get_pipeline_model_parallel_group() | |
torch.distributed.broadcast(done, src, group) | |
yield tokens, lengths | |
else: | |
if mpu.is_pipeline_first_stage(): | |
src = mpu.get_pipeline_model_parallel_last_rank() | |
group = mpu.get_embedding_group() | |
new_tokens = torch.empty_like(tokens[:, context_length]) | |
torch.distributed.broadcast(new_tokens, src, group) | |
tokens[:, context_length] = new_tokens | |
yield tokens, None | |
else: | |
yield None, None | |
done = get_accelerator().ByteTensor([0]) | |
src = mpu.get_pipeline_model_parallel_last_rank() | |
group = mpu.get_pipeline_model_parallel_group() | |
torch.distributed.broadcast(done, src, group) | |
context_length += 1 | |
counter += 1 | |
if done: | |
break | |