peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/pretrain_vision_classify.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""Pretrain VIT""" | |
import torch | |
import torch.nn.functional as F | |
from functools import partial | |
from megatron import get_args, get_timers, print_rank_0 | |
from megatron.core.enums import ModelType | |
from megatron.data.vit_dataset import build_train_valid_datasets | |
from megatron.model.vision.classification import VitClassificationModel | |
from megatron.model.vision.classification import MitClassificationModel | |
from megatron.training import pretrain | |
from megatron.utils import average_losses_across_data_parallel_group | |
from megatron.arguments import core_transformer_config_from_args | |
def model_provider(pre_process=True, post_process=True): | |
"""Build the model.""" | |
args = get_args() | |
config = core_transformer_config_from_args(args) | |
if args.vision_backbone_type == 'vit': | |
print_rank_0("building VIT model ...") | |
model = VitClassificationModel(config=config, | |
num_classes=args.num_classes, | |
pre_process=pre_process, | |
post_process=post_process) | |
elif args.vision_backbone_type == 'mit': | |
print_rank_0("building MIT model ...") | |
model = MitClassificationModel(num_classes=args.num_classes, | |
pre_process=pre_process, | |
post_process=post_process) | |
else: | |
raise Exception('{} vision backbone is not supported.'.format( | |
args.vision_backbone_type)) | |
return model | |
def get_batch(data_iterator): | |
"""Build the batch.""" | |
data = next(data_iterator) | |
# only data parallelism; no need for broadcast | |
images = data[0].cuda() | |
labels = data[1].cuda() | |
return images, labels | |
def loss_func(labels, output_tensor): | |
logits = output_tensor.contiguous().float() | |
loss = F.cross_entropy(logits, labels) | |
outputs = torch.argmax(logits, -1) | |
correct = (outputs == labels).float() | |
accuracy = torch.mean(correct) | |
averaged_loss = average_losses_across_data_parallel_group([loss, accuracy]) | |
return loss, {"loss": averaged_loss[0], "accuracy": averaged_loss[1]} | |
def forward_step(data_iterator, model): | |
"""Forward step.""" | |
timers = get_timers() | |
# Get the batch. | |
timers("batch-generator", log_level=2).start() | |
( | |
images, | |
labels, | |
) = get_batch(data_iterator) | |
timers("batch-generator").stop() | |
# Forward model. lm_labels | |
output_tensor = model(images) | |
return output_tensor, partial(loss_func, labels) | |
def train_valid_test_datasets_provider(train_val_test_num_samples): | |
"""Build train, valid, and test datasets.""" | |
args = get_args() | |
print_rank_0( | |
"> building train, validation, and test datasets " "for VIT ..." | |
) | |
train_ds, valid_ds = build_train_valid_datasets( | |
data_path=args.data_path, | |
image_size=(args.img_h, args.img_w) | |
) | |
print_rank_0("> finished creating VIT datasets ...") | |
return train_ds, valid_ds, None | |
if __name__ == "__main__": | |
pretrain( | |
train_valid_test_datasets_provider, | |
model_provider, | |
ModelType.encoder_or_decoder, | |
forward_step, | |
args_defaults={'dataloader_type': 'cyclic', 'vision_pretraining': True} | |
) | |