peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/pretrain_vision_dino.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
import torch | |
import torch.nn.functional as F | |
import torch.nn as nn | |
import numpy as np | |
import torch.distributed as dist | |
from functools import partial | |
from megatron import get_args, get_timers, print_rank_0 | |
from megatron.core.enums import ModelType | |
from megatron.data.vit_dataset import build_train_valid_datasets | |
from megatron.model.vision.dino import DINOPretrainModel | |
from megatron.model.vision.knn_monitor import knn_predict, get_feature_bank | |
from megatron.training import pretrain | |
from megatron.utils import average_losses_across_data_parallel_group, unwrap_model | |
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP | |
from megatron.model import DistributedDataParallel as LocalDDP | |
from megatron.model import Float16Module | |
from megatron.arguments import core_transformer_config_from_args | |
def model_provider(pre_process=True, post_process=True): | |
"""Build the model.""" | |
config = core_transformer_config_from_args(get_args()) | |
return DINOPretrainModel(config, pre_process=pre_process, post_process=post_process) | |
def get_batch(data_iterator): | |
"""Build the batch.""" | |
data = next(data_iterator) | |
# only data parallelism; no need for broadcast | |
if isinstance(data[0], list): | |
images = [aug.cuda() for aug in data[0]] | |
else: | |
images = data[0].cuda() | |
labels = data[1].cuda() | |
return images, labels | |
def loss_func(model, labels, output_tensor, collect_data=False): | |
args = get_args() | |
model = unwrap_model( | |
model, | |
(torchDDP, LocalDDP, Float16Module) | |
) | |
if model.training: | |
student_output, teacher_output = output_tensor | |
loss = model.dino_loss(student_output, teacher_output, args.curr_iteration) | |
averaged_loss = average_losses_across_data_parallel_group([loss]) | |
return loss, {"loss": averaged_loss[0]} | |
else: | |
_, teacher_feature = output_tensor | |
feature_bank, feature_labels, classes = get_feature_bank() | |
feature = F.normalize(teacher_feature.float(), dim=1) | |
knn_accs = [] | |
for k in [10, 20, 100, 200]: | |
pred_labels = knn_predict(feature, feature_bank, | |
feature_labels, classes, k, 0.07) | |
knn_acc = (pred_labels[:, 0] == labels).float().mean() | |
knn_accs.append(knn_acc) | |
averaged_loss = average_losses_across_data_parallel_group(knn_accs) | |
return 0, {"knn_acc_10": averaged_loss[0], | |
"knn_acc_20": averaged_loss[1], | |
"knn_acc_100": averaged_loss[2], | |
"knn_acc_200": averaged_loss[3]} | |
def forward_step(data_iterator, model): | |
"""Forward step.""" | |
timers = get_timers() | |
# Get the batch. | |
timers("batch-generator", log_level=2).start() | |
( | |
images, | |
labels, | |
) = get_batch(data_iterator) | |
timers("batch-generator").stop() | |
return model(images), partial(loss_func, model, labels) | |
def train_valid_test_datasets_provider(train_val_test_num_samples): | |
"""Build train, valid, and test datasets.""" | |
args = get_args() | |
print_rank_0( | |
"> building train, validation, and test datasets " "for VIT ..." | |
) | |
train_ds, valid_ds = build_train_valid_datasets( | |
data_path=args.data_path, | |
image_size=(args.img_h, args.img_w) | |
) | |
print_rank_0("> finished creating VIT datasets ...") | |
return train_ds, valid_ds, None | |
if __name__ == "__main__": | |
pretrain( | |
train_valid_test_datasets_provider, | |
model_provider, | |
ModelType.encoder_or_decoder, | |
forward_step, | |
args_defaults={'dataloader_type': 'cyclic', 'vision_pretraining': True} | |
) | |