peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/pretrain_vision_inpaint.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""Pretrain VIT""" | |
import torch | |
import torch.nn.functional as F | |
from functools import partial | |
from megatron import get_args, get_timers, print_rank_0, print_rank_last | |
from megatron.core.enums import ModelType | |
from megatron.data.vit_dataset import build_train_valid_datasets | |
from megatron.model.vision.inpainting import VitInpaintingModel | |
from megatron.model.vision.inpainting import MitInpaintingModel | |
from megatron.training import pretrain | |
from megatron.utils import average_losses_across_data_parallel_group | |
from tasks.vision.metrics import SSIM, PSNR | |
from megatron.arguments import core_transformer_config_from_args | |
def model_provider(pre_process=True, post_process=True): | |
"""Build the model.""" | |
args = get_args() | |
config = core_transformer_config_from_args(args) | |
if args.vision_backbone_type == 'vit': | |
model = VitInpaintingModel(config, | |
pre_process=pre_process, | |
post_process=post_process) | |
elif args.vision_backbone_type == 'mit': | |
model = MitInpaintingModel(pre_process=pre_process, | |
post_process=post_process) | |
else: | |
raise Exception('{} vision backbone is not supported.'.format( | |
args.vision_backbone_type)) | |
return model | |
def get_batch(data_iterator): | |
"""Build the batch.""" | |
data = next(data_iterator) | |
# only data parallelism; no need for broadcast | |
images = data[0][0].cuda() | |
masks = data[0][1].cuda() | |
return images, masks | |
def loss_func(images, masks, masked_images, outputs, collect_data=False): | |
outputs = outputs.contiguous().float() | |
masks_flip = 1-masks | |
flip_masked_outputs = outputs.masked_fill(masks_flip.bool(), 0) | |
flip_masked_images = images.masked_fill(masks_flip.bool(), 0) | |
ssim_fun = SSIM() | |
psnr_fun = PSNR() | |
if not collect_data: | |
mask_count = torch.count_nonzero(masks) | |
loss = F.mse_loss( | |
flip_masked_outputs, | |
flip_masked_images.float(), | |
reduction="sum" | |
) | |
loss = loss/mask_count | |
ssim = ssim_fun(flip_masked_outputs, flip_masked_images.float()) | |
psnr = psnr_fun(flip_masked_outputs, flip_masked_images.float()) | |
averaged_loss = average_losses_across_data_parallel_group( | |
[loss, psnr, ssim] | |
) | |
return loss, {"loss": averaged_loss[0], | |
"psnr": averaged_loss[1], | |
'ssim': averaged_loss[2]} | |
else: | |
synth_images = masked_images.float() + flip_masked_outputs | |
ssim = ssim_fun(synth_images, images.float()) | |
psnr = psnr_fun(synth_images, images.float()) | |
return torch.cat((images, masked_images, synth_images), dim=2), ssim, psnr | |
def forward_step(data_iterator, model): | |
"""Forward step.""" | |
timers = get_timers() | |
# Get the batch. | |
timers("batch-generator", log_level=2).start() | |
( | |
images, | |
masks, | |
) = get_batch(data_iterator) | |
timers("batch-generator").stop() | |
masked_images = images.masked_fill(masks.bool(), 0) | |
outputs = model(masked_images) | |
# Forward mode | |
return outputs, partial(loss_func, images, masks, masked_images) | |
def process_non_loss_data(data, iteration, writer): | |
psnr_sum = 0 | |
ssim_sum = 0 | |
for (output_tb, ssim, psnr) in data: | |
output_tb[output_tb < 0] = 0 | |
output_tb[output_tb > 1] = 1 | |
writer.add_images("gt-input-output-vald", output_tb, | |
global_step=iteration, walltime=None, | |
dataformats='NCHW') | |
psnr_sum = psnr_sum + psnr.item() | |
ssim_sum = ssim_sum + ssim.item() | |
psnr = psnr_sum/len(data) | |
ssim = ssim_sum/len(data) | |
writer.add_scalar('PSNR generate value-validation', psnr, iteration) | |
writer.add_scalar('SSIM generate value-validation', ssim, iteration) | |
def train_valid_test_datasets_provider(train_val_test_num_samples): | |
"""Build train, valid, and test datasets.""" | |
args = get_args() | |
print_rank_0( | |
"> building train, validation, and test datasets " "for VIT ..." | |
) | |
train_ds, valid_ds = build_train_valid_datasets( | |
data_path=args.data_path, | |
image_size=(args.img_h, args.img_w) | |
) | |
print_rank_0("> finished creating VIT datasets ...") | |
return train_ds, valid_ds, None | |
if __name__ == "__main__": | |
pretrain( | |
train_valid_test_datasets_provider, | |
model_provider, | |
ModelType.encoder_or_decoder, | |
forward_step, | |
process_non_loss_data, | |
args_defaults={'dataloader_type': 'cyclic', 'vision_pretraining': True} | |
) | |