peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/tasks
/ensemble_classifier.py
import os | |
import argparse | |
import collections | |
import numpy as np | |
import torch | |
def process_files(args): | |
all_predictions = collections.OrderedDict() | |
all_labels = collections.OrderedDict() | |
all_uid = collections.OrderedDict() | |
for path in args.paths: | |
path = os.path.join(path, args.prediction_name) | |
try: | |
data = torch.load(path) | |
for dataset in data: | |
name, d = dataset | |
predictions, labels, uid = d | |
if name not in all_predictions: | |
all_predictions[name] = np.array(predictions) | |
if args.labels is None: | |
args.labels = [i for i in range(all_predictions[name].shape[1])] | |
if args.eval: | |
all_labels[name] = np.array(labels) | |
all_uid[name] = np.array(uid) | |
else: | |
all_predictions[name] += np.array(predictions) | |
assert np.allclose(all_uid[name], np.array(uid)) | |
except Exception as e: | |
print(e) | |
continue | |
return all_predictions, all_labels, all_uid | |
def get_threshold(all_predictions, all_labels, one_threshold=False): | |
if one_threshold: | |
all_predictons = {'combined': np.concatenate(list(all_predictions.values()))} | |
all_labels = {'combined': np.concatenate(list(all_predictions.labels()))} | |
out_thresh = [] | |
for dataset in all_predictions: | |
preds = all_predictions[dataset] | |
labels = all_labels[dataset] | |
out_thresh.append(calc_threshold(preds, labels)) | |
return out_thresh | |
def calc_threshold(p, l): | |
trials = [(i) * (1. / 100.) for i in range(100)] | |
best_acc = float('-inf') | |
best_thresh = 0 | |
for t in trials: | |
acc = ((apply_threshold(p, t).argmax(-1) == l).astype(float)).mean() | |
if acc > best_acc: | |
best_acc = acc | |
best_thresh = t | |
return best_thresh | |
def apply_threshold(preds, t): | |
assert (np.allclose(preds.sum(-1), np.ones(preds.shape[0]))) | |
prob = preds[:, -1] | |
thresholded = (prob >= t).astype(int) | |
preds = np.zeros_like(preds) | |
preds[np.arange(len(thresholded)), thresholded.reshape(-1)] = 1 | |
return preds | |
def threshold_predictions(all_predictions, threshold): | |
if len(threshold) != len(all_predictions): | |
threshold = [threshold[-1]] * (len(all_predictions) - len(threshold)) | |
for i, dataset in enumerate(all_predictions): | |
thresh = threshold[i] | |
preds = all_predictions[dataset] | |
all_predictions[dataset] = apply_threshold(preds, thresh) | |
return all_predictions | |
def postprocess_predictions(all_predictions, all_labels, args): | |
for d in all_predictions: | |
all_predictions[d] = all_predictions[d] / len(args.paths) | |
if args.calc_threshold: | |
args.threshold = get_threshold(all_predictions, all_labels, args.one_threshold) | |
print('threshold', args.threshold) | |
if args.threshold is not None: | |
all_predictions = threshold_predictions(all_predictions, args.threshold) | |
return all_predictions, all_labels | |
def write_predictions(all_predictions, all_labels, all_uid, args): | |
all_correct = 0 | |
count = 0 | |
for dataset in all_predictions: | |
preds = all_predictions[dataset] | |
preds = np.argmax(preds, -1) | |
if args.eval: | |
correct = (preds == all_labels[dataset]).sum() | |
num = len(all_labels[dataset]) | |
accuracy = correct / num | |
count += num | |
all_correct += correct | |
accuracy = (preds == all_labels[dataset]).mean() | |
print(accuracy) | |
if not os.path.exists(os.path.join(args.outdir, dataset)): | |
os.makedirs(os.path.join(args.outdir, dataset)) | |
outpath = os.path.join( | |
args.outdir, dataset, os.path.splitext( | |
args.prediction_name)[0] + '.tsv') | |
with open(outpath, 'w') as f: | |
f.write('id\tlabel\n') | |
f.write('\n'.join(str(uid) + '\t' + str(args.labels[p]) | |
for uid, p in zip(all_uid[dataset], preds.tolist()))) | |
if args.eval: | |
print(all_correct / count) | |
def ensemble_predictions(args): | |
all_predictions, all_labels, all_uid = process_files(args) | |
all_predictions, all_labels = postprocess_predictions(all_predictions, all_labels, args) | |
write_predictions(all_predictions, all_labels, all_uid, args) | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--paths', required=True, nargs='+', | |
help='paths to checkpoint directories used in ensemble') | |
parser.add_argument('--eval', action='store_true', | |
help='compute accuracy metrics against labels (dev set)') | |
parser.add_argument('--outdir', | |
help='directory to place ensembled predictions in') | |
parser.add_argument('--prediction-name', default='test_predictions.pt', | |
help='name of predictions in checkpoint directories') | |
parser.add_argument('--calc-threshold', action='store_true', | |
help='calculate threshold classification') | |
parser.add_argument('--one-threshold', action='store_true', | |
help='use on threshold for all subdatasets') | |
parser.add_argument('--threshold', nargs='+', default=None, type=float, | |
help='user supplied threshold for classification') | |
parser.add_argument('--labels', nargs='+', default=None, | |
help='whitespace separated list of label names') | |
args = parser.parse_args() | |
ensemble_predictions(args) | |
if __name__ == '__main__': | |
main() | |