peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/tasks
/eval_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""Evaluation utilities.""" | |
import os | |
import time | |
from functools import partial | |
import torch | |
from megatron import get_args | |
from megatron import print_rank_last, is_last_rank | |
from megatron.core import mpu | |
from megatron.schedules import get_forward_backward_func | |
from tasks.finetune_utils import build_data_loader | |
from tasks.finetune_utils import process_batch | |
from deepspeed.accelerator import get_accelerator | |
def accuracy_func_provider(single_dataset_provider): | |
"""Provide function that calculates accuracies.""" | |
args = get_args() | |
# Build dataloaders. | |
datapaths = args.valid_data | |
dataloaders = [] | |
for datapath in datapaths: | |
dataset = single_dataset_provider(datapath) | |
dataloader = build_data_loader( | |
dataset, args.orig_micro_batch_size, num_workers=args.num_workers, | |
drop_last=(mpu.get_data_parallel_world_size() > 1)) | |
dataloaders.append((dataset.dataset_name, dataloader)) | |
def metrics_func(model, epoch, output_predictions=False): | |
print_rank_last('calculating metrics ...') | |
correct = 0 | |
total = 0 | |
if output_predictions: | |
assert mpu.get_data_parallel_world_size() == 1 | |
named_predictions = [] | |
names = 'predictions' | |
for name, dataloader in dataloaders: | |
output = calculate_correct_answers(name, model, dataloader, | |
epoch, output_predictions) | |
if not output_predictions: | |
correct_ans, total_count = output | |
else: | |
correct_ans, total_count, predictions = output | |
named_predictions.append((name, predictions)) | |
names += '_' + name | |
correct += correct_ans | |
total += total_count | |
if is_last_rank(): | |
percent = 0 | |
if total > 0: | |
percent = float(correct) * 100.0 / float(total) | |
print(' >> |epoch: {}| overall: correct / total = {} / {} = ' | |
'{:.4f} %'.format(epoch, correct, total, percent)) | |
if output_predictions and is_last_rank(): | |
assert args.load is not None | |
filename = os.path.join(args.load, names + '.pt') | |
torch.save(named_predictions, filename) | |
return metrics_func | |
def calculate_correct_answers(name, model, dataloader, | |
epoch, output_predictions): | |
"""Calculate correct over total answers and return prediction if the | |
`output_predictions` is true.""" | |
args = get_args() | |
forward_backward_func = get_forward_backward_func() | |
start_time = time.time() | |
for m in model: | |
m.eval() | |
saved_micro_batch_size = args.micro_batch_size | |
saved_global_batch_size = args.global_batch_size | |
ds = dataloader.dataset | |
if hasattr(ds, 'sample_multiplier'): | |
# If our dataset as a sample_multiplier attribute that means | |
# each "sample" from the dataset actually has multiple samples | |
# that will collapse into the batch dimension (for example in | |
# the RACE dataset that has several options), we need to | |
# account for that when setting the micro batch size. | |
sample_multiplier = ds.sample_multiplier | |
else: | |
sample_multiplier = 1 | |
micro_batch_size_times_data_parallel = args.orig_micro_batch_size * args.data_parallel_size | |
num_micro_batches = args.orig_global_batch_size // micro_batch_size_times_data_parallel | |
def loss_func(output_predictions, labels, output_tensor): | |
args = get_args() | |
logits = output_tensor | |
loss_dict = {} | |
# Add output predictions. | |
if output_predictions: | |
assert False | |
loss_dict['softmaxes'] = torch.nn.Softmax(dim=-1)( | |
logits.float()).data.cpu().numpy().tolist() | |
loss_dict['labels'] = labels.data.cpu().numpy().tolist() | |
loss_dict['ids'] = batch['uid'].cpu().numpy().tolist() | |
# Compute the correct answers. | |
if args.finetune and args.task == 'CoLA': | |
predicted = torch.argmax(logits, dim=-1) | |
loss_dict['labels'] = labels.data.cpu().numpy().tolist() | |
loss_dict['predicted'] = predicted.data.cpu().numpy().tolist() | |
elif args.finetune and args.task == 'STS-B': | |
predicted = torch.squeeze(logits) | |
loss_dict['labels'] = labels.data.cpu().numpy().tolist() | |
loss_dict['predicted'] = predicted.data.cpu().numpy().tolist() | |
else: | |
predicted = torch.argmax(logits, dim=-1) | |
corrects = (predicted == labels) | |
# Add to the counters. | |
loss_dict['total'] = labels.size(0) | |
loss_dict['correct'] = corrects.sum().item() | |
return 0, loss_dict | |
# defined inside to capture output_predictions | |
def correct_answers_forward_step(batch, model): | |
try: | |
batch_ = next(batch) | |
except BaseException: | |
batch_ = batch | |
tokens, types, labels, attention_mask = process_batch(batch_) | |
# Forward model. | |
args = get_args() | |
output_tensor = model(tokens, attention_mask, tokentype_ids=types) | |
return output_tensor, partial(loss_func, output_predictions, labels) | |
with torch.no_grad(): | |
# For all the batches in the dataset. | |
total = 0 | |
correct = 0 | |
labels = [] | |
predicted = [] | |
if output_predictions: | |
# This option is only possible when data parallel size is 1. | |
assert mpu.get_data_parallel_world_size() == 1 | |
softmaxes = [] | |
labels = [] | |
ids = [] | |
for _, batch in enumerate(dataloader): | |
# For evaluation only mode we use drop_last = False to get all the | |
# samples, which means we might not have a full batch, so we | |
# adjust batch_size here to actual batch size of data | |
actual_batch_size = len(batch['label']) | |
# ... applying sample_multiplier if necessary | |
args.micro_batch_size = actual_batch_size * sample_multiplier | |
args.global_batch_size = actual_batch_size * sample_multiplier * num_micro_batches | |
loss_dicts = forward_backward_func(correct_answers_forward_step, batch, model, | |
optimizer=None, timers=None, forward_only=True) | |
for loss_dict in loss_dicts: | |
if output_predictions: | |
softmaxes.extend(loss_dict['softmaxes']) | |
labels.extend(loss_dict['labels']) | |
ids.extend(loss_dict['ids']) | |
if args.finetune and args.task in ['CoLA', 'STS-B']: | |
labels.extend(loss_dict['labels']) | |
predicted.extend(loss_dict['predicted']) | |
else: | |
total += loss_dict['total'] | |
correct += loss_dict['correct'] | |
for m in model: | |
m.train() | |
args.micro_batch_size = saved_micro_batch_size | |
args.global_batch_size = saved_global_batch_size | |
# Reduce. | |
if mpu.is_pipeline_last_stage(): | |
if args.finetune and args.task in ['CoLA', 'STS-B']: | |
if args.task == 'CoLA': | |
labels = get_accelerator().LongTensor(labels) | |
predicted = get_accelerator().LongTensor(predicted) | |
labels_gather = [torch.zeros(len(labels), dtype=torch.long, | |
device=labels.device) for _ in range(mpu.get_data_parallel_world_size())] | |
predicted_gather = [torch.zeros(len(predicted), dtype=torch.long, | |
device=predicted.device) for _ in range(mpu.get_data_parallel_world_size())] | |
else: | |
labels = get_accelerator().FloatTensor(labels) | |
predicted = get_accelerator().FloatTensor(predicted) | |
labels_gather = [torch.zeros(len(labels), dtype=torch.float, | |
device=labels.device) for _ in range(mpu.get_data_parallel_world_size())] | |
predicted_gather = [torch.zeros(len(predicted), dtype=torch.float, | |
device=predicted.device) for _ in range(mpu.get_data_parallel_world_size())] | |
torch.distributed.all_gather(labels_gather, labels, | |
group=mpu.get_data_parallel_group()) | |
torch.distributed.all_gather(predicted_gather, predicted, | |
group=mpu.get_data_parallel_group()) | |
labels_gather = sum([x.data.cpu().numpy().tolist() for x in labels_gather], []) | |
predicted_gather = sum([x.data.cpu().numpy().tolist() for x in predicted_gather], []) | |
# Print on screen. | |
if args.task == 'CoLA': | |
from sklearn.metrics import matthews_corrcoef | |
mcc = matthews_corrcoef(labels_gather, predicted_gather) | |
elapsed_time = time.time() - start_time | |
print_rank_last(' > |epoch: {}| metrics for {}: mcc ' | |
'= {} , elapsed time (sec): {:.3f}'.format( | |
epoch, name, mcc, elapsed_time)) | |
else: | |
from scipy.stats import pearsonr, spearmanr | |
pearson_corr = pearsonr(predicted_gather, labels_gather)[0] | |
spearman_corr = spearmanr(predicted_gather, labels_gather)[0] | |
corr = (pearson_corr + spearman_corr) / 2 | |
elapsed_time = time.time() - start_time | |
print_rank_last(' > |epoch: {}| metrics for {}: pearson ' | |
'= {} spearmanr = {} corr = {} elapsed time (sec): {:.3f}'.format( | |
epoch, name, pearson_corr, spearman_corr, | |
corr, elapsed_time)) | |
if output_predictions: | |
return 0, 0, () | |
return 0, 0 | |
else: | |
unreduced = get_accelerator().LongTensor([correct, total]) | |
torch.distributed.all_reduce(unreduced, | |
group=mpu.get_data_parallel_group()) | |
# Print on screen. | |
correct_ans = unreduced[0].item() | |
total_count = unreduced[1].item() | |
percent = float(correct_ans) * 100.0 / float(total_count) | |
elapsed_time = time.time() - start_time | |
print_rank_last(' > |epoch: {}| metrics for {}: correct / total ' | |
'= {} / {} = {:.4f} %, elapsed time (sec): {:.3f}'.format( | |
epoch, name, correct_ans, total_count, | |
percent, elapsed_time)) | |
if output_predictions: | |
return correct_ans, total_count, (softmaxes, labels, ids) | |
return correct_ans, total_count | |
if output_predictions: | |
return 0, 0, () | |
return 0, 0 | |