peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/tasks
/glue
/data.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""GLUE dataset.""" | |
from abc import ABC | |
from abc import abstractmethod | |
from torch.utils.data import Dataset | |
from megatron import print_rank_0 | |
from tasks.data_utils import build_sample | |
from tasks.data_utils import build_tokens_types_paddings_from_text | |
class GLUEAbstractDataset(ABC, Dataset): | |
"""GLUE base dataset class.""" | |
def __init__(self, task_name, dataset_name, datapaths, | |
tokenizer, max_seq_length): | |
# Store inputs. | |
self.task_name = task_name | |
self.dataset_name = dataset_name | |
self.tokenizer = tokenizer | |
self.max_seq_length = max_seq_length | |
print_rank_0(' > building {} dataset for {}:'.format(self.task_name, | |
self.dataset_name)) | |
# Process the files. | |
string = ' > paths:' | |
for path in datapaths: | |
string += ' ' + path | |
print_rank_0(string) | |
self.samples = [] | |
for datapath in datapaths: | |
self.samples.extend(self.process_samples_from_single_path(datapath)) | |
print_rank_0(' >> total number of samples: {}'.format( | |
len(self.samples))) | |
def __len__(self): | |
return len(self.samples) | |
def __getitem__(self, idx): | |
raw_sample = self.samples[idx] | |
ids, types, paddings = build_tokens_types_paddings_from_text( | |
raw_sample['text_a'], raw_sample['text_b'], | |
self.tokenizer, self.max_seq_length) | |
sample = build_sample(ids, types, paddings, | |
raw_sample['label'], raw_sample['uid']) | |
return sample | |
def process_samples_from_single_path(self, datapath): | |
"""Abstract method that takes a single path / filename and | |
returns a list of dataset samples, each sample being a dict of | |
{'text_a': string, 'text_b': string, 'label': int, 'uid': int} | |
""" | |
pass | |