peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/tasks
/glue
/mnli.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""MNLI dataset.""" | |
from megatron import print_rank_0 | |
from tasks.data_utils import clean_text | |
from .data import GLUEAbstractDataset | |
LABELS = {'contradiction': 0, 'entailment': 1, 'neutral': 2} | |
class MNLIDataset(GLUEAbstractDataset): | |
def __init__(self, name, datapaths, tokenizer, max_seq_length, | |
test_label='contradiction'): | |
self.test_label = test_label | |
super().__init__('MNLI', name, datapaths, | |
tokenizer, max_seq_length) | |
def process_samples_from_single_path(self, filename): | |
""""Implement abstract method.""" | |
print_rank_0(' > Processing {} ...'.format(filename)) | |
samples = [] | |
total = 0 | |
first = True | |
is_test = False | |
with open(filename, 'r') as f: | |
for line in f: | |
row = line.strip().split('\t') | |
if first: | |
first = False | |
if len(row) == 10: | |
is_test = True | |
print_rank_0( | |
' reading {}, {} and {} columns and setting ' | |
'labels to {}'.format( | |
row[0].strip(), row[8].strip(), | |
row[9].strip(), self.test_label)) | |
else: | |
print_rank_0(' reading {} , {}, {}, and {} columns ' | |
'...'.format( | |
row[0].strip(), row[8].strip(), | |
row[9].strip(), row[-1].strip())) | |
continue | |
text_a = clean_text(row[8].strip()) | |
text_b = clean_text(row[9].strip()) | |
unique_id = int(row[0].strip()) | |
label = row[-1].strip() | |
if is_test: | |
label = self.test_label | |
assert len(text_a) > 0 | |
assert len(text_b) > 0 | |
assert label in LABELS | |
assert unique_id >= 0 | |
sample = {'text_a': text_a, | |
'text_b': text_b, | |
'label': LABELS[label], | |
'uid': unique_id} | |
total += 1 | |
samples.append(sample) | |
if total % 50000 == 0: | |
print_rank_0(' > processed {} so far ...'.format(total)) | |
print_rank_0(' >> processed {} samples.'.format(len(samples))) | |
return samples | |