peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/tasks
/msdp
/preprocessing.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""Preprocessing for Wizard of Wikipedia and Wizard of Internet datasets""" | |
import torch | |
import argparse | |
from nltk import word_tokenize | |
from tqdm import tqdm | |
import numpy as np | |
import json | |
def get_args(): | |
parser = argparse.ArgumentParser(description="Preprocessing") | |
parser.add_argument("--func", type=str, default=None, | |
help="choose to run which function") | |
parser.add_argument("--raw_file", type=str, default=None, | |
help="path of the input file") | |
parser.add_argument("--processed_file", type=str, default=None, | |
help="path of the output file") | |
parser.add_argument("--knwl_ref_file", type=str, default=None, | |
help="path of the knowledge reference file") | |
parser.add_argument("--resp_ref_file", type=str, default=None, | |
help="path of the knowledge reference file") | |
parser.add_argument("--knwl_gen_file", type=str, default=None, | |
help="path of the generated knowledge file") | |
parser.add_argument("--test_file", type=str, default=None, | |
help="path of the test file") | |
parser.add_argument("--train_file", type=str, default=None, | |
help="path of the train file") | |
parser.add_argument("--model_file", type=str, default=None, | |
help="path of the model file") | |
parser.add_argument("--data_type", type=str, default=None, | |
help="data types, choose one out of three types: \ | |
wow_seen, wow_unseen, and woi") | |
parser.add_argument("--seed", type=int, default=1234, | |
help="random seed") | |
args = parser.parse_args() | |
return args | |
def process_wow_dataset(raw_file, processed_file, knwl_ref_file, resp_ref_file): | |
""" | |
This is a function used for processing the wizard of wikipedia (wow) dataset | |
Expected processed format: | |
topic \t dialogue context \t golden knowledge \t golden response | |
""" | |
# loading the raw data | |
print("> Loading data from %s" % raw_file) | |
with open(raw_file, "r") as fr: | |
dialog_data = json.load(fr) | |
print("> Processing data ...") | |
fproc = open(processed_file, "w") | |
fknwl = open(knwl_ref_file, "w") if knwl_ref_file else None | |
fresp = open(resp_ref_file, "w") if resp_ref_file else None | |
for i, sample in enumerate(tqdm(dialog_data)): | |
# get all the dialog data for a single dialog sample | |
dialog = sample["dialog"] | |
turn_list = [] # collect the dialog history | |
# processing for each single dialog sample | |
for j, turn in enumerate(dialog): | |
# text of each turn | |
text = turn["text"] | |
if not (text.endswith("?") or text.endswith(".") or text.endswith("!")): | |
text = text + "." | |
if j == 0: | |
# first turn | |
turn_list.append(text) | |
continue | |
speaker = turn["speaker"].lower() | |
if "wizard" in speaker: | |
checked_sentence = list(turn["checked_sentence"].values()) # knowledge | |
checked_passage = list(turn["checked_passage"].values()) # topic | |
assert len(checked_sentence) <= 1 | |
# get the ground truth knowledge | |
if len(checked_sentence) > 0: | |
checked_sentence = checked_sentence[0] | |
else: | |
checked_sentence = "no_passages_used" | |
if len(checked_passage) == 1: | |
checked_passage = checked_passage[0] | |
else: | |
checked_passage = "no_passages_used" | |
# get the topic | |
if checked_passage != "no_passages_used": | |
topic = checked_passage | |
else: | |
topic = sample["chosen_topic"] | |
dialog_context = " [SEP] ".join(turn_list) | |
knowledge = checked_sentence | |
response = text | |
# add the response into the dialog history | |
turn_list.append(response) | |
# write to the output files | |
fproc.write(topic + "\t" + dialog_context + "\t" + \ | |
knowledge + "\t" + response + "\n") | |
if fknwl: | |
fknwl.write(knowledge + "\n") | |
if fresp: | |
# tokenize for evaluation | |
response = " ".join(word_tokenize(response)) | |
fresp.write(response + "\n") | |
else: | |
assert "apprentice" in speaker | |
turn_list.append(text) | |
fproc.close() | |
if fknwl: | |
fknwl.close() | |
if fresp: | |
fresp.close() | |
def process_woi_dataset(raw_file, processed_file, knwl_ref_file, resp_ref_file): | |
""" | |
This is a function used for processing the wizard of internet (woi) dataset | |
Expected processed format: | |
topic \t dialogue context \t golden knowledge \t golden response | |
""" | |
print("> Processing %s" % raw_file) | |
fproc = open(processed_file, "w") | |
fknwl = open(knwl_ref_file, "w") if knwl_ref_file else None | |
fresp = open(resp_ref_file, "w") if resp_ref_file else None | |
with open(raw_file, "r") as fr: | |
for i, line in tqdm(enumerate(fr)): | |
# read line by line, each line uses json format | |
line = line.strip() | |
item_dict = json.loads(line) | |
# item_dict is a dictionary | |
# its key is the data id, and its value contains all the data content | |
item_dict = item_dict.values() | |
item_dict = list(item_dict)[0] # len(item_dict) == 1 | |
# get the whole dialog data for a single dialog sample | |
dialog_data = item_dict['dialog_history'] | |
length = len(dialog_data) | |
turn_list = [] # collect the dialog history | |
search_text = "" | |
for i in range(length): | |
item = dialog_data[i] | |
action = item['action'] | |
if action == "Wizard => SearchAgent": | |
search_text = item['text'] | |
elif action == "Wizard => Apprentice": | |
if len(turn_list) == 0: | |
# first turn | |
turn = item['text'] | |
turn_list.append(turn) | |
continue | |
# get the relevant content | |
contents = item["context"]["contents"] | |
selects = item["context"]["selected_contents"] | |
flag = selects[0][0] | |
selects = selects[1:] | |
assert len(selects) == len(contents) | |
# get the topic | |
if flag: | |
# no knowledge sentence is used for the response | |
topic = "no_topic" | |
knwl_sent = "no_passages_used" | |
else: | |
# we consider the search text as the topic | |
topic = search_text | |
# get the knowledge sentence | |
knwl_sent = "" | |
for content, select in zip(contents, selects): | |
content = content['content'] | |
assert len(content) == len(select) | |
for c, s in zip(content, select): | |
if s: | |
knwl_sent = c | |
break | |
if knwl_sent == "": | |
# no knowledge is used for the response | |
topic = "no_topic" | |
knwl_sent = "no_passages_used" | |
# get dialogue context, knowledge, and response | |
dialog_context = " [SEP] ".join(turn_list) | |
response = item['text'] | |
# processing | |
topic = topic.replace("\n", "").replace("\r", \ | |
"").replace("\t", "") | |
dialog_context = dialog_context.replace("\n", "").replace("\r", \ | |
"").replace("\t", "") | |
knwl_sent = knwl_sent.replace("\n", "").replace("\r", \ | |
"").replace("\t", "") | |
response = response.replace("\n", "").replace("\r", \ | |
"").replace("\t", "") | |
if topic != "no_topic": | |
# write to the ouput files | |
fproc.write(topic + "\t" + dialog_context + "\t" + \ | |
knwl_sent + "\t" + response + "\n") | |
if fknwl: | |
fknwl.write(knwl_sent + "\n") | |
if fresp: | |
# tokenize for evaluation | |
response = " ".join(word_tokenize(response)) | |
fresp.write(response + "\n") | |
turn_list.append(response) | |
elif action == "Apprentice => Wizard": | |
turn = item['text'] | |
turn_list.append(turn) | |
else: | |
assert action == "SearchAgent => Wizard", \ | |
"Please check whether you have used the correct data!" | |
fproc.close() | |
if fknwl: | |
fknwl.close() | |
if fresp: | |
fresp.close() | |
def get_database(test_datapath, train_datapath, data_type): | |
"""Get the database by topics""" | |
assert data_type in ["wow_seen", "wow_unseen", "woi"], \ | |
"Please input a correct data type!!" | |
# get test data topic dictionary | |
print("> reading test data from %s" % test_datapath) | |
test_topics = {} | |
with open(test_datapath, "r") as f: | |
for i, line in enumerate(f): | |
line = line.strip() | |
splits = line.split("\t") | |
topic = splits[0] | |
test_topics[topic] = True | |
print("> reading data from %s" % train_datapath) | |
train_data_by_topic = {} | |
dialog_data_by_topic = {} | |
dialog_examples = [] | |
with open(train_datapath, "r") as f: | |
for i, line in enumerate(f): | |
line = line.strip() | |
splits = line.split("\t") | |
topic = splits[0] | |
turns = splits[1].split(" [SEP] ")[-3:] | |
knowledge = splits[2] | |
response = splits[3] | |
# filtering data samples | |
if knowledge == "no_passages_used": | |
# when no knowledge is used | |
continue | |
if data_type != "wow_seen" and ("(" in knowledge or ")" in knowledge): | |
# when bracket exists in the knowledge | |
continue | |
if data_type != "wow_seen" and topic not in knowledge: | |
# when topic does not exist in the knowledge | |
continue | |
# get the instance | |
last_turn = turns[-1] | |
instance = "( " + last_turn + " ) " + topic + " => " + knowledge | |
# construct dialog example | |
dialog_example = "" | |
if data_type != "wow_seen": | |
dialog_example += "( " + topic + " ) " | |
for i, turn in enumerate(turns): | |
if i != 0: | |
dialog_example += " " | |
dialog_example += turn | |
# check overlaps | |
if topic in test_topics: | |
if topic not in train_data_by_topic: | |
train_data_by_topic[topic] = [instance] | |
else: | |
train_data_by_topic[topic].append(instance) | |
if topic not in dialog_data_by_topic: | |
dialog_data_by_topic[topic] = [dialog_example] | |
else: | |
dialog_data_by_topic[topic].append(dialog_example) | |
else: | |
# filtering data samples | |
if len(knowledge.split()) > 20: | |
# knowledge is too long | |
continue | |
if knowledge.startswith("It") or knowledge.startswith("it") or \ | |
knowledge.startswith("This") or knowledge.startswith("this"): | |
continue | |
# append all the data into dialogue examples list | |
dialog_examples.append((topic, dialog_example, instance)) | |
return train_data_by_topic, dialog_data_by_topic, dialog_examples | |
emb_dict = {} | |
def select_prompts_based_on_similarity( | |
query, dialog_list, prompt_list, topic, tokenizer, encoder, topk): | |
"""Select samples based on the similarity""" | |
with torch.no_grad(): | |
# get the query embeddings | |
query_ids = tokenizer.encode(query) | |
query_ids = torch.LongTensor([query_ids]).cuda() | |
query_emb = encoder(input_ids=query_ids).pooler_output | |
query_emb = query_emb[0] | |
# calculate embeddings for the samples in the database | |
if topic in emb_dict: | |
example_embeddings = emb_dict[topic] | |
example_embeddings = example_embeddings.cuda() | |
else: | |
for idx, example in enumerate(dialog_list): | |
example_ids = tokenizer.encode(example) | |
example_ids = torch.LongTensor([example_ids]).cuda() | |
example_emb = encoder(input_ids=example_ids).pooler_output | |
if idx == 0: | |
example_embeddings = example_emb | |
else: | |
example_embeddings = torch.cat( | |
(example_embeddings, example_emb), dim=0) | |
emb_dict[topic] = example_embeddings.cpu() | |
# compare the similarity and select the topk samples | |
similarity_list = example_embeddings.matmul(query_emb) | |
_, indices = torch.topk(similarity_list, k=topk) | |
indices = indices.tolist() | |
indices = indices[::-1] # reverse the order | |
selected_prompts = [] | |
for index in indices: | |
# index = index.item() | |
selected_prompts.append(prompt_list[index]) | |
return selected_prompts | |
def prompt_selection_for_knowledge_generation( | |
test_datapath, train_datapath, model_path, output_prompt_path, data_type): | |
"""Selecting prompts for the knowledge generation""" | |
print("> Selecting prompts for the knowledge generation") | |
train_data_by_topic, dialog_data_by_topic, dialog_examples = \ | |
get_database(test_datapath, train_datapath, data_type) | |
from transformers import DPRQuestionEncoderTokenizer | |
print("> loading tokenizer and encoder") | |
tokenizer = DPRQuestionEncoderTokenizer.from_pretrained( | |
'facebook/dpr-question_encoder-single-nq-base') | |
encoder = torch.load(model_path).cuda() | |
print("> getting dialog embeddings") | |
with torch.no_grad(): | |
for idx, example in tqdm(enumerate(dialog_examples)): | |
dialog = example[1] | |
dialog_ids = tokenizer.encode(dialog) | |
dialog_ids = torch.LongTensor([dialog_ids]).cuda() | |
dialog_emb = encoder(input_ids=dialog_ids).pooler_output | |
if idx == 0: | |
dialog_embeddings = dialog_emb | |
else: | |
dialog_embeddings = torch.cat((dialog_embeddings, dialog_emb), dim=0) | |
print("> reading test data from %s" % test_datapath) | |
prompt_list_for_each_sample = [] | |
with open(test_datapath, "r") as f: | |
for i, line in tqdm(enumerate(f)): | |
line = line.strip() | |
splits = line.split("\t") | |
topic = splits[0] | |
turns = splits[1].split(" [SEP] ")[-3:] | |
# get the query sentence | |
query_sent = "" | |
if data_type != "seen": | |
query_sent += "( " + topic + " ) " | |
for i, turn in enumerate(turns): | |
if i != 0: | |
query_sent += " " | |
query_sent += turn | |
if topic not in train_data_by_topic: | |
# get the query embedding | |
query_ids = tokenizer.encode(query_sent) | |
query_ids = torch.LongTensor([query_ids]).cuda() | |
query_emb = encoder(input_ids=query_ids).pooler_output | |
query_emb = query_emb[0] | |
# calculate the similarity | |
similarity_list = dialog_embeddings.matmul(query_emb) | |
_, indices = torch.sort(similarity_list) | |
indices = indices.tolist() | |
selected_topics = {} | |
selected_prompts = [] | |
num_prompt = 0 | |
for index in indices: | |
example = dialog_examples[index] | |
topic_temp = example[0] | |
if topic_temp not in selected_topics: | |
selected_topics[topic_temp] = True | |
selected_prompts.append(example[2]) | |
num_prompt += 1 | |
if num_prompt == 10: | |
break | |
# get the selected samples | |
example_list = selected_prompts[::-1] | |
key = topic + " " + turns[-1] | |
prompt_list_for_each_sample.append({key: example_list}) | |
else: | |
num_data_sample = min(len(train_data_by_topic[topic]), 10) | |
total_example_list = train_data_by_topic[topic] | |
dialog_list = dialog_data_by_topic[topic] | |
assert len(dialog_list) == len(train_data_by_topic[topic]) | |
# calculate the similarity | |
example_list = select_prompts_based_on_similarity( | |
query_sent, dialog_list, total_example_list, | |
topic, tokenizer, encoder, topk=num_data_sample) | |
key = topic + " " + turns[-1] | |
prompt_list_for_each_sample.append({key: example_list}) | |
print("writing to %s" % output_prompt_path) | |
with open(output_prompt_path, "w") as f: | |
for instance in tqdm(prompt_list_for_each_sample): | |
json.dump(instance, f) | |
f.write("\n") | |
def prompt_selection_for_response_generation(input_path, output_path, seed): | |
"""Selecting prompts for the response generation""" | |
print("> Selecting prompts for the response generation") | |
print("> set random seed") | |
np.random.seed(seed) | |
prompt_example_list = [] | |
print("> reading data from %s" % input_path) | |
with open(input_path, "r") as f: | |
for i, line in tqdm(enumerate(f)): | |
line = line.strip() | |
splits = line.split("\t") | |
# get the topic, context, knowledge and response | |
topic = splits[0] | |
dialog_context = splits[1] | |
knowledge = splits[2] | |
response = splits[3] | |
turns = dialog_context.split(" [SEP] ")[-3:] | |
if knowledge == "no_passages_used": | |
continue | |
# calculate the overlap ratio | |
from nltk import word_tokenize | |
knowledge_sent_token_list = word_tokenize(knowledge) | |
knowledge_sent_token_dict = {token: True for token in knowledge_sent_token_list} | |
knowledge_len = len(knowledge_sent_token_list) | |
response_token_list = word_tokenize(response) | |
response_len = len(response_token_list) | |
num_overlap_token = 0 | |
accumulator = 0 | |
for token in response_token_list: | |
if token in knowledge_sent_token_dict: | |
accumulator += 1 | |
else: | |
if accumulator >= 10: | |
num_overlap_token += accumulator | |
accumulator = 0 | |
if accumulator >= 10: | |
num_overlap_token += accumulator | |
# filtering the data based on the ratio | |
if num_overlap_token > response_len * 0.9 or num_overlap_token < response_len * 0.6: | |
continue | |
if num_overlap_token < knowledge_len * 0.8: | |
continue | |
last_turn = " ".join(word_tokenize(turns[-1])) | |
knowledge = " ".join(word_tokenize(knowledge)) | |
response = " ".join(word_tokenize(response)) | |
prompt_example = "" | |
# add dialog context | |
prompt_example += "Topic: " + topic + ". " | |
prompt_example += "User says: " + last_turn + " " | |
prompt_example += "We know that: " + knowledge + " " | |
prompt_example += "System replies: " + response | |
prompt_example_list.append(prompt_example) | |
# shuffle the prompt examples | |
np.random.shuffle(prompt_example_list) | |
print("> writing to %s" % output_path) | |
with open(output_path, "w") as f: | |
# f.write("Generate the System's response based on the knowledge sentence:\n") | |
for i in tqdm(range(20)): | |
example = prompt_example_list[i] | |
f.write(example + "\n") | |
def prepare_input_for_response_generation(test_file, knwl_gen_file, processed_file): | |
"""Preparing inputs for the response generation""" | |
print("> Reading knowledge file from %s" % knwl_gen_file) | |
# get the knowledge list | |
with open(knwl_gen_file, "r") as f: | |
knowledge_list = f.readlines() | |
print("> Processing ...") | |
with open(test_file, "r") as fr: | |
with open(processed_file, "w") as fw: | |
for line_num, line in enumerate(tqdm(fr)): | |
line = line.strip() | |
splits = line.split("\t") | |
# prepare topic, context, knowledge and response | |
topic = splits[0] | |
dialog_context = splits[1] | |
response = splits[3] | |
knowledge = knowledge_list[line_num] | |
knowledge = knowledge.strip() | |
if "<|endoftext|>" in knowledge: | |
knowledge = knowledge.replace("<|endoftext|>", "") | |
# write to the output file | |
fw.write(topic + "\t" + dialog_context + "\t" \ | |
+ knowledge + "\t" + response + "\n") | |
if __name__ == "__main__": | |
args = get_args() | |
if args.func == "process_wow_dataset": | |
process_wow_dataset(args.raw_file, args.processed_file, args.knwl_ref_file, args.resp_ref_file) | |
elif args.func == "process_woi_dataset": | |
process_woi_dataset(args.raw_file, args.processed_file, args.knwl_ref_file, args.resp_ref_file) | |
elif args.func == "get_knwl_gen_prompts": | |
prompt_selection_for_knowledge_generation( | |
args.test_file, args.train_file, args.model_file, | |
args.processed_file, args.data_type) | |
elif args.func == "get_resp_gen_prompts": | |
prompt_selection_for_response_generation( | |
args.train_file, args.processed_file, args.seed) | |
elif args.func == "prepare_input": | |
prepare_input_for_response_generation( | |
args.test_file, args.knwl_gen_file, args.processed_file) | |