peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/tasks
/race
/data.py
import glob | |
import json | |
import os | |
import time | |
from torch.utils.data import Dataset | |
from megatron import print_rank_0 | |
from tasks.data_utils import build_sample | |
from tasks.data_utils import build_tokens_types_paddings_from_ids | |
from tasks.data_utils import clean_text | |
NUM_CHOICES = 4 | |
MAX_QA_LENGTH = 128 | |
class RaceDataset(Dataset): | |
def __init__(self, dataset_name, datapaths, tokenizer, max_seq_length, | |
max_qa_length=MAX_QA_LENGTH): | |
self.dataset_name = dataset_name | |
print_rank_0(' > building RACE dataset for {}:'.format( | |
self.dataset_name)) | |
string = ' > paths:' | |
for path in datapaths: | |
string += ' ' + path | |
print_rank_0(string) | |
self.samples = [] | |
for datapath in datapaths: | |
self.samples.extend(process_single_datapath(datapath, tokenizer, | |
max_qa_length, | |
max_seq_length)) | |
print_rank_0(' >> total number of samples: {}'.format( | |
len(self.samples))) | |
# This indicates that each "sample" has multiple samples that | |
# will collapse into batch dimension | |
self.sample_multiplier = NUM_CHOICES | |
def __len__(self): | |
return len(self.samples) | |
def __getitem__(self, idx): | |
return self.samples[idx] | |
def process_single_datapath(datapath, tokenizer, max_qa_length, max_seq_length): | |
"""Read in RACE files, combine, clean-up, tokenize, and convert to | |
samples.""" | |
print_rank_0(' > working on {}'.format(datapath)) | |
start_time = time.time() | |
# Get list of files. | |
filenames = glob.glob(os.path.join(datapath, '*.txt')) | |
samples = [] | |
num_docs = 0 | |
num_questions = 0 | |
num_samples = 0 | |
# Load all the files | |
for filename in filenames: | |
with open(filename, 'r') as f: | |
for line in f: | |
data = json.loads(line) | |
num_docs += 1 | |
context = data["article"] | |
questions = data["questions"] | |
choices = data["options"] | |
answers = data["answers"] | |
# Check the length. | |
assert len(questions) == len(answers) | |
assert len(questions) == len(choices) | |
# Context: clean up and convert to ids. | |
context = clean_text(context) | |
context_ids = tokenizer.tokenize(context) | |
# Loop over questions. | |
for qi, question in enumerate(questions): | |
num_questions += 1 | |
# Label. | |
label = ord(answers[qi]) - ord("A") | |
assert label >= 0 | |
assert label < NUM_CHOICES | |
assert len(choices[qi]) == NUM_CHOICES | |
# For each question, build num-choices samples. | |
ids_list = [] | |
types_list = [] | |
paddings_list = [] | |
for ci in range(NUM_CHOICES): | |
choice = choices[qi][ci] | |
# Merge with choice. | |
if "_" in question: | |
qa = question.replace("_", choice) | |
else: | |
qa = " ".join([question, choice]) | |
# Clean QA. | |
qa = clean_text(qa) | |
# Tokenize. | |
qa_ids = tokenizer.tokenize(qa) | |
# Trim if needed. | |
if len(qa_ids) > max_qa_length: | |
qa_ids = qa_ids[0:max_qa_length] | |
# Build the sample. | |
ids, types, paddings \ | |
= build_tokens_types_paddings_from_ids( | |
qa_ids, context_ids, max_seq_length, | |
tokenizer.cls, tokenizer.sep, tokenizer.pad) | |
ids_list.append(ids) | |
types_list.append(types) | |
paddings_list.append(paddings) | |
# Convert to numpy and add to samples | |
samples.append(build_sample(ids_list, types_list, | |
paddings_list, label, | |
num_samples)) | |
num_samples += 1 | |
elapsed_time = time.time() - start_time | |
print_rank_0(' > processed {} document, {} questions, and {} samples' | |
' in {:.2f} seconds'.format(num_docs, num_questions, | |
num_samples, elapsed_time)) | |
return samples | |