peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/tasks
/race
/finetune.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""Race.""" | |
from megatron import get_args | |
from megatron import print_rank_0 | |
from megatron import get_tokenizer | |
from megatron.model.multiple_choice import MultipleChoice | |
from tasks.eval_utils import accuracy_func_provider | |
from tasks.finetune_utils import finetune | |
from tasks.race.data import RaceDataset | |
from megatron.arguments import core_transformer_config_from_args | |
def train_valid_datasets_provider(): | |
"""Provide train and validation datasets.""" | |
args = get_args() | |
tokenizer = get_tokenizer() | |
train_dataset = RaceDataset('training', args.train_data, | |
tokenizer, args.seq_length) | |
valid_dataset = RaceDataset('validation', args.valid_data, | |
tokenizer, args.seq_length) | |
return train_dataset, valid_dataset | |
def model_provider(pre_process=True, post_process=True): | |
"""Build the model.""" | |
config = core_transformer_config_from_args(get_args()) | |
print_rank_0('building multichoice model for RACE ...') | |
model = MultipleChoice(config=config, | |
num_tokentypes=2, | |
pre_process=pre_process, | |
post_process=post_process) | |
return model | |
def metrics_func_provider(): | |
"""Privde metrics callback function.""" | |
args = get_args() | |
tokenizer = get_tokenizer() | |
def single_dataset_provider(datapath): | |
name = datapath.split('RACE')[-1].strip('/').replace('/', '-') | |
return RaceDataset(name, [datapath], tokenizer, args.seq_length) | |
return accuracy_func_provider(single_dataset_provider) | |
def main(): | |
finetune(train_valid_datasets_provider, model_provider, | |
end_of_epoch_callback_provider=metrics_func_provider) | |