peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/tasks
/vision
/finetune_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""Finetune utilities.""" | |
import torch | |
import torch.nn.functional as F | |
from megatron import get_args | |
from megatron import print_rank_0 | |
from megatron import get_timers | |
from megatron import utils | |
from megatron.core import mpu | |
from megatron.checkpointing import load_checkpoint | |
from megatron.checkpointing import save_checkpoint | |
from megatron.training import evaluate_and_print_results | |
from megatron.training import setup_model_and_optimizer | |
from megatron.training import train_step | |
from megatron.training import training_log | |
from megatron.utils import check_adlr_autoresume_termination | |
from megatron.utils import average_losses_across_data_parallel_group, print_params_min_max_norm | |
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP | |
from megatron.model import DistributedDataParallel as LocalDDP | |
from megatron.model import Float16Module | |
from megatron.core.enums import ModelType | |
from deepspeed.accelerator import get_accelerator | |
def process_batch(batch): | |
"""Process batch and produce inputs for the model.""" | |
images = batch[0].to(get_accelerator().device_name()).contiguous() | |
labels = batch[1].to(get_accelerator().device_name()).contiguous() | |
return images, labels | |
def build_data_loader(dataset, micro_batch_size, | |
num_workers, drop_last, shuffle): | |
"""Data loader. Note that batch-size is the local (per GPU) batch-size.""" | |
# Sampler. | |
world_size = mpu.get_data_parallel_world_size() | |
rank = mpu.get_data_parallel_rank() | |
sampler = torch.utils.data.distributed.DistributedSampler( | |
dataset, num_replicas=world_size, rank=rank, | |
drop_last=drop_last, shuffle=shuffle | |
) | |
# Data loader. Note that batch size is the per GPU batch size. | |
data_loader = torch.utils.data.DataLoader( | |
dataset, | |
batch_size=micro_batch_size, | |
sampler=sampler, | |
shuffle=False, | |
num_workers=num_workers, | |
drop_last=drop_last, | |
pin_memory=True, | |
) | |
return data_loader | |
def _build_infinite_size_dataloader(dataloader): | |
"""Build a looped dataloader with infinite size.""" | |
iterator = dataloader.__iter__() | |
while True: | |
try: | |
yield iterator.__next__() | |
except StopIteration: | |
iterator = dataloader.__iter__() | |
def _build_train_valid_dataloaders(train_dataset, valid_dataset): | |
"""Traing and validation dataloaders.""" | |
args = get_args() | |
print_rank_0('building train and validation dataloaders ...') | |
# Training dataset. | |
train_dataloader = build_data_loader(train_dataset, args.micro_batch_size, | |
args.num_workers, False, True) | |
# Set the training iterations. | |
args.train_iters_per_epoch = len(train_dataloader) | |
args.train_iters = args.epochs * args.train_iters_per_epoch | |
# Validation dataset. For this dataset, we do not need to set up | |
# shuffling so we can just use a simple infinite loop. | |
valid_dataloader_ = build_data_loader(valid_dataset, args.micro_batch_size, | |
args.num_workers, True, False) | |
valid_dataloader = _build_infinite_size_dataloader(valid_dataloader_) | |
# Now that we've built the data loaders, set batch_size arguments | |
# to the actual batch size the model will see for this dataset. | |
# This is necessary so pipeline transfers know what size they are | |
# and the LR schedule, which is based on samples seen, gets set | |
# correctly. | |
args.orig_micro_batch_size = args.micro_batch_size | |
args.orig_global_batch_size = args.global_batch_size | |
return train_dataloader, valid_dataloader | |
def _train( | |
model, | |
optimizer, | |
opt_param_scheduler, | |
forward_step, | |
train_dataloader, | |
valid_dataloader, | |
end_of_epoch_callback, | |
process_non_loss_data_func=None | |
): | |
"""Train the model.""" | |
args = get_args() | |
timers = get_timers() | |
# Turn on training mode which enables dropout. | |
for m in model: | |
m.train() | |
# Tracking loss. | |
losses_dict_sum = {} | |
# Starting epoch and iteration | |
start_epoch = args.iteration // args.train_iters_per_epoch | |
start_iteration = args.iteration % args.train_iters_per_epoch | |
iteration = args.iteration | |
# Memory reporting flag. | |
report_memory_flag = True | |
# For each remaining epoch | |
timers("interval-time", log_level=0).start(barrier=True) | |
for epoch in range(start_epoch, args.epochs): | |
print_rank_0("working on epoch {} ...".format(epoch + 1)) | |
# Set the data loader epoch to shuffle the index iterator. | |
train_dataloader.sampler.set_epoch(args.seed + epoch) | |
train_dataloader.dataset.set_epoch(epoch) | |
# For all the batches in the dataset. | |
for iteration_, batch in enumerate(train_dataloader): | |
# Ignore the iterations before starting value | |
if iteration_ < start_iteration: | |
continue | |
# Set to zero so the next epoch does not skip any batches. | |
start_iteration = 0 | |
# Train for one step. | |
losses_dict, skipped_iter, grad_norm, num_zeros_in_grad = train_step( | |
forward_step, batch, model, optimizer, opt_param_scheduler | |
) | |
iteration += 1 | |
# Logging. | |
params_norm = None | |
report_memory_flag = training_log( | |
losses_dict, | |
losses_dict_sum, | |
optimizer.param_groups[0]["lr"], | |
iteration, | |
optimizer.get_loss_scale().item(), | |
report_memory_flag, | |
skipped_iter, | |
grad_norm, | |
params_norm, | |
num_zeros_in_grad | |
) | |
# Autoresume | |
if args.adlr_autoresume and \ | |
iteration % args.adlr_autoresume_interval == 0: | |
check_adlr_autoresume_termination(iteration, model, optimizer, | |
opt_param_scheduler) | |
# Checkpointing | |
if args.save and args.save_interval and \ | |
iteration % args.save_interval == 0: | |
save_checkpoint(iteration, model, optimizer, | |
opt_param_scheduler) | |
# Evaluation | |
if args.eval_interval and iteration % args.eval_interval == 0: | |
prefix = "iteration {}".format(iteration) | |
evaluate_and_print_results( | |
prefix, | |
forward_step, | |
valid_dataloader, | |
model, | |
iteration, | |
process_non_loss_data_func, | |
False, | |
) | |
# Callback at the end of each epoch. | |
if end_of_epoch_callback is not None: | |
end_of_epoch_callback(model, epoch) | |
def finetune( | |
train_valid_datasets_provider, | |
model_provider, | |
forward_step, | |
model_type=ModelType.encoder_or_decoder, | |
process_non_loss_data_func=None, | |
end_of_epoch_callback_provider=None, | |
): | |
"""Main finetune function used across all tasks.""" | |
args = get_args() | |
timers = get_timers() | |
# Train and validation data loaders. | |
timers("train/valid/test dataset/dataloder", log_level=0).start() | |
if args.epochs > 0: | |
train_dataset, valid_dataset = train_valid_datasets_provider() | |
train_dataloader, valid_dataloader = _build_train_valid_dataloaders( | |
train_dataset, valid_dataset | |
) | |
timers("train/valid/test dataset/dataloder").stop() | |
# Build calback function. | |
timers("callback function", log_level=0).start() | |
end_of_epoch_callback = None | |
if end_of_epoch_callback_provider is not None: | |
end_of_epoch_callback = end_of_epoch_callback_provider() | |
timers("callback function").stop() | |
# Build model, optimizer and learning rate scheduler. | |
timers("model and optimizer", log_level=0).start() | |
model, optimizer, opt_param_scheduler = \ | |
setup_model_and_optimizer( | |
model_provider, | |
model_type, | |
scale_lr_cond=lambda name, param: ".head." in name, | |
lr_mult=args.head_lr_mult) | |
timers("model and optimizer").stop() | |
# If pretrained checkpoint is provided and we have not trained for | |
# any iteration (i.e., iteration is zero), then load the pretrained | |
# checkpoint. | |
timers("pretrained checkpoint", log_level=0).start(barrier=True) | |
if args.iteration == 0 and args.pretrained_checkpoint is not None: | |
if args.pretrained_checkpoint_type == 'default': | |
original_load = args.load | |
args.load = args.pretrained_checkpoint | |
_ = load_checkpoint(model, None, None, strict=False) | |
args.load = original_load | |
elif args.pretrained_checkpoint_type == 'external': | |
unwrap_model = utils.unwrap_model(model) | |
state_dict = torch.load(args.pretrained_checkpoint, | |
map_location="cpu") | |
unwrap_model[0].module.backbone.load_state_dict(state_dict, | |
strict=False) | |
elif args.pretrained_checkpoint_type == 'constrastive': | |
unwrap_model = utils.unwrap_model(model) | |
state_dict = torch.load(args.pretrained_checkpoint, | |
map_location="cpu") | |
state_dict = state_dict["model"] | |
state_dict = {k.replace("teacher.backbone.", ""): v | |
for k, v in state_dict.items() | |
if k.startswith("teacher.backbone.")} | |
unwrap_model[0].module.backbone.load_state_dict(state_dict, | |
strict=False) | |
else: | |
raise Exception("pretrained checkpoint type {} not supported".format(args.pretrained_checkpoint_type)) | |
# This is critical when only model is loaded. We should make sure | |
# master parameters are also updated. | |
optimizer.reload_model_params() | |
timers("pretrained checkpoint").stop() | |
# Print setup timing. | |
print_rank_0("done with setups ...") | |
timers.log( | |
[ | |
"train/valid/test dataset/dataloder", | |
"callback function", | |
"model and optimizer", | |
"pretrained checkpoint", | |
] | |
) | |
print_rank_0("training ...") | |
# Finetune the model. | |
if args.epochs > 0: | |
_train( | |
model, | |
optimizer, | |
opt_param_scheduler, | |
forward_step, | |
train_dataloader, | |
valid_dataloader, | |
end_of_epoch_callback, | |
process_non_loss_data_func, | |
) | |
# Or just evaluate. | |
else: | |
if end_of_epoch_callback is not None: | |
print_rank_0("evaluation only mode, setting epoch to -1") | |
end_of_epoch_callback(model, epoch=-1) | |
print_rank_0("done :-)") | |