peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/tasks
/vision
/segmentation
/cityscapes.py
# BSD 3-Clause License | |
# | |
# Copyright (c) Soumith Chintala 2016, | |
# All rights reserved. | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions are met: | |
# | |
# * Redistributions of source code must retain the above copyright notice, this | |
# list of conditions and the following disclaimer. | |
# | |
# * Redistributions in binary form must reproduce the above copyright notice, | |
# this list of conditions and the following disclaimer in the documentation | |
# and/or other materials provided with the distribution. | |
# | |
# * Neither the name of the copyright holder nor the names of its | |
# contributors may be used to endorse or promote products derived from | |
# this software without specific prior written permission. | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | |
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | |
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | |
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
# code taken from | |
# https://github.com/pytorch/vision/blob/main/torchvision/datasets/cityscapes.py | |
# modified it to change max label index from 255 to 19 (num_classes) | |
import torch | |
import json | |
import os | |
from collections import namedtuple | |
from typing import Any, Callable, Dict, List, Optional, Union, Tuple | |
import numpy as np | |
from torchvision.datasets.utils import extract_archive, verify_str_arg, iterable_to_str | |
from torchvision.datasets import VisionDataset | |
from PIL import Image | |
from megatron import print_rank_0 | |
class Cityscapes(VisionDataset): | |
"""`Cityscapes <http://www.cityscapes-dataset.com/>`_ Dataset. | |
Args: | |
root (string): Root directory of dataset where directory ``leftImg8bit`` | |
and ``gtFine`` or ``gtCoarse`` are located. | |
split (string, optional): The image split to use, ``train``, ``test`` or ``val`` if mode="fine" | |
otherwise ``train``, ``train_extra`` or ``val`` | |
mode (string, optional): The quality mode to use, ``fine`` or ``coarse`` | |
target_type (string or list, optional): Type of target to use, ``instance``, ``semantic``, ``polygon`` | |
or ``color``. Can also be a list to output a tuple with all specified target types. | |
transform (callable, optional): A function/transform that takes in a PIL image | |
and returns a transformed version. E.g, ``transforms.RandomCrop`` | |
target_transform (callable, optional): A function/transform that takes in the | |
target and transforms it. | |
transforms (callable, optional): A function/transform that takes input sample and its target as entry | |
and returns a transformed version. | |
Examples: | |
Get semantic segmentation target | |
.. code-block:: python | |
dataset = Cityscapes('./data/cityscapes', split='train', mode='fine', | |
target_type='semantic') | |
img, smnt = dataset[0] | |
Get multiple targets | |
.. code-block:: python | |
dataset = Cityscapes('./data/cityscapes', split='train', mode='fine', | |
target_type=['instance', 'color', 'polygon']) | |
img, (inst, col, poly) = dataset[0] | |
Validate on the "coarse" set | |
.. code-block:: python | |
dataset = Cityscapes('./data/cityscapes', split='val', mode='coarse', | |
target_type='semantic') | |
img, smnt = dataset[0] | |
""" | |
num_classes = 19 | |
ignore_index = 19 | |
color_table = torch.tensor( | |
[[128, 64, 128], | |
[244, 35, 232], | |
[70, 70, 70], | |
[102, 102, 156], | |
[190, 153, 153], | |
[153, 153, 153], | |
[250, 170, 30], | |
[220, 220, 0], | |
[107, 142, 35], | |
[152, 251, 152], | |
[70, 130, 180], | |
[220, 20, 60], | |
[255, 0, 0], | |
[0, 0, 142], | |
[0, 0, 70], | |
[0, 60, 100], | |
[0, 80, 100], | |
[0, 0, 230], | |
[119, 11, 32], | |
[0, 0, 0]], dtype=torch.float, device='cuda') | |
# Based on https://github.com/mcordts/cityscapesScripts | |
CityscapesClass = namedtuple('CityscapesClass', ['name', 'id', 'train_id', | |
'category', 'category_id', 'has_instances', 'ignore_in_eval', 'color']) | |
classes = [ | |
CityscapesClass('unlabeled', 0, 19, 'void', 0, False, True, (0, 0, 0)), | |
CityscapesClass('ego vehicle', 1, 19, 'void', 0, False, True, (0, 0, 0)), | |
CityscapesClass('rectification border', 2, 19, 'void', 0, False, True, (0, 0, 0)), | |
CityscapesClass('out of roi', 3, 19, 'void', 0, False, True, (0, 0, 0)), | |
CityscapesClass('static', 4, 19, 'void', 0, False, True, (0, 0, 0)), | |
CityscapesClass('dynamic', 5, 19, 'void', 0, False, True, (111, 74, 0)), | |
CityscapesClass('ground', 6, 19, 'void', 0, False, True, (81, 0, 81)), | |
CityscapesClass('road', 7, 0, 'flat', 1, False, False, (128, 64, 128)), | |
CityscapesClass('sidewalk', 8, 1, 'flat', 1, False, False, (244, 35, 232)), | |
CityscapesClass('parking', 9, 19, 'flat', 1, False, True, (250, 170, 160)), | |
CityscapesClass('rail track', 10, 19, 'flat', 1, False, True, (230, 150, 140)), | |
CityscapesClass('building', 11, 2, 'construction', 2, False, False, (70, 70, 70)), | |
CityscapesClass('wall', 12, 3, 'construction', 2, False, False, (102, 102, 156)), | |
CityscapesClass('fence', 13, 4, 'construction', 2, False, False, (190, 153, 153)), | |
CityscapesClass('guard rail', 14, 19, 'construction', 2, False, True, (180, 165, 180)), | |
CityscapesClass('bridge', 15, 19, 'construction', 2, False, True, (150, 100, 100)), | |
CityscapesClass('tunnel', 16, 19, 'construction', 2, False, True, (150, 120, 90)), | |
CityscapesClass('pole', 17, 5, 'object', 3, False, False, (153, 153, 153)), | |
CityscapesClass('polegroup', 18, 19, 'object', 3, False, True, (153, 153, 153)), | |
CityscapesClass('traffic light', 19, 6, 'object', 3, False, False, (250, 170, 30)), | |
CityscapesClass('traffic sign', 20, 7, 'object', 3, False, False, (220, 220, 0)), | |
CityscapesClass('vegetation', 21, 8, 'nature', 4, False, False, (107, 142, 35)), | |
CityscapesClass('terrain', 22, 9, 'nature', 4, False, False, (152, 251, 152)), | |
CityscapesClass('sky', 23, 10, 'sky', 5, False, False, (70, 130, 180)), | |
CityscapesClass('person', 24, 11, 'human', 6, True, False, (220, 20, 60)), | |
CityscapesClass('rider', 25, 12, 'human', 6, True, False, (255, 0, 0)), | |
CityscapesClass('car', 26, 13, 'vehicle', 7, True, False, (0, 0, 142)), | |
CityscapesClass('truck', 27, 14, 'vehicle', 7, True, False, (0, 0, 70)), | |
CityscapesClass('bus', 28, 15, 'vehicle', 7, True, False, (0, 60, 100)), | |
CityscapesClass('caravan', 29, 19, 'vehicle', 7, True, True, (0, 0, 90)), | |
CityscapesClass('trailer', 30, 19, 'vehicle', 7, True, True, (0, 0, 110)), | |
CityscapesClass('train', 31, 16, 'vehicle', 7, True, False, (0, 80, 100)), | |
CityscapesClass('motorcycle', 32, 17, 'vehicle', 7, True, False, (0, 0, 230)), | |
CityscapesClass('bicycle', 33, 18, 'vehicle', 7, True, False, (119, 11, 32)), | |
CityscapesClass('license plate', -1, -1, 'vehicle', 7, False, True, (0, 0, 142)), | |
] | |
# label2trainid | |
label2trainid = { label.id : label.train_id for label in classes} | |
def __init__( | |
self, | |
root: str, | |
split: str = "train", | |
mode: str = "fine", | |
resolution: int = 1024, | |
transform: Optional[Callable] = None, | |
target_transform: Optional[Callable] = None, | |
transforms: Optional[Callable] = None, | |
) -> None: | |
super(Cityscapes, self).__init__(root, transforms, transform, target_transform) | |
self.mode = 'gtFine' if mode == 'fine' else 'gtCoarse' | |
self.images_dir = os.path.join(self.root, 'leftImg8bit_trainvaltest/leftImg8bit', split) | |
self.targets_dir = os.path.join(self.root, 'gtFine_trainvaltest/gtFine', split) | |
self.split = split | |
self.resolution = resolution | |
self.images = [] | |
self.targets = [] | |
for city in sorted(os.listdir(self.images_dir)): | |
img_dir = os.path.join(self.images_dir, city) | |
target_dir = os.path.join(self.targets_dir, city) | |
for file_name in os.listdir(img_dir): | |
target_name = '{}_{}_labelIds.png'.format(file_name.split('_leftImg8bit')[0], self.mode) | |
self.images.append(os.path.join(img_dir, file_name)) | |
self.targets.append(os.path.join(target_dir, target_name)) | |
def __getitem__(self, index: int) -> Tuple[Any, Any]: | |
""" | |
Args: | |
index (int): Index | |
Returns: | |
tuple: (image, target) where target is a tuple of all target types if target_type is a list with more | |
than one item. Otherwise target is a json object if target_type="polygon", else the image segmentation. | |
""" | |
image = Image.open(self.images[index]).convert('RGB') | |
target = Image.open(self.targets[index]) | |
target = np.array(target) | |
target_copy = target.copy() | |
for k, v in Cityscapes.label2trainid.items(): | |
binary_target = (target == k) | |
target_copy[binary_target] = v | |
target = target_copy | |
target = Image.fromarray(target.astype(np.uint8)) | |
if self.transforms is not None: | |
image, target = self.transforms(image, target) | |
return image, target | |
def __len__(self) -> int: | |
# len(self.images) | |
return len(self.images) | |