peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/tasks
/vision
/segmentation
/metrics.py
#!/usr/bin/env python | |
# -*- coding: UTF-8 -*- | |
#copyright (c) go-hiroaki & Chokurei | |
#email: [email protected] | |
# [email protected] | |
# | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
eps = 1e-6 | |
def _binarize(y_data, threshold): | |
""" | |
args: | |
y_data : [float] 4-d tensor in [batch_size, channels, img_rows, img_cols] | |
threshold : [float] [0.0, 1.0] | |
return 4-d binarized y_data | |
""" | |
y_data[y_data < threshold] = 0.0 | |
y_data[y_data >= threshold] = 1.0 | |
return y_data | |
def _argmax(y_data, dim): | |
""" | |
args: | |
y_data : 4-d tensor in [batch_size, chs, img_rows, img_cols] | |
dim : int | |
return 3-d [int] y_data | |
""" | |
return torch.argmax(y_data, dim).int() | |
def _get_tp(y_pred, y_true): | |
""" | |
args: | |
y_true : [int] 3-d in [batch_size, img_rows, img_cols] | |
y_pred : [int] 3-d in [batch_size, img_rows, img_cols] | |
return [float] true_positive | |
""" | |
return torch.sum(y_true * y_pred).float() | |
def _get_fp(y_pred, y_true): | |
""" | |
args: | |
y_true : 3-d ndarray in [batch_size, img_rows, img_cols] | |
y_pred : 3-d ndarray in [batch_size, img_rows, img_cols] | |
return [float] false_positive | |
""" | |
return torch.sum((1 - y_true) * y_pred).float() | |
def _get_tn(y_pred, y_true): | |
""" | |
args: | |
y_true : 3-d ndarray in [batch_size, img_rows, img_cols] | |
y_pred : 3-d ndarray in [batch_size, img_rows, img_cols] | |
return [float] true_negative | |
""" | |
return torch.sum((1 - y_true) * (1 - y_pred)).float() | |
def _get_fn(y_pred, y_true): | |
""" | |
args: | |
y_true : 3-d ndarray in [batch_size, img_rows, img_cols] | |
y_pred : 3-d ndarray in [batch_size, img_rows, img_cols] | |
return [float] false_negative | |
""" | |
return torch.sum(y_true * (1 - y_pred)).float() | |
def _get_weights(y_true, nb_ch): | |
""" | |
args: | |
y_true : 3-d ndarray in [batch_size, img_rows, img_cols] | |
nb_ch : int | |
return [float] weights | |
""" | |
batch_size, img_rows, img_cols = y_true.shape | |
pixels = batch_size * img_rows * img_cols | |
weights = [torch.sum(y_true==ch).item() / pixels for ch in range(nb_ch)] | |
return weights | |
class CFMatrix(object): | |
def __init__(self, des=None): | |
self.des = des | |
def __repr__(self): | |
return "ConfusionMatrix" | |
def __call__(self, y_pred, y_true, ignore_index, threshold=0.5): | |
""" | |
args: | |
y_true : 3-d ndarray in [batch_size, img_rows, img_cols] | |
y_pred : 4-d ndarray in [batch_size, chs, img_rows, img_cols] | |
threshold : [0.0, 1.0] | |
return confusion matrix | |
""" | |
batch_size, img_rows, img_cols = y_pred.shape | |
chs = ignore_index | |
device = y_true.device | |
if chs == 1: | |
y_pred = _binarize(y_pred, threshold) | |
y_true = _binarize(y_true, threshold) | |
nb_tp = _get_tp(y_pred, y_true) | |
nb_fp = _get_fp(y_pred, y_true) | |
nb_tn = _get_tn(y_pred, y_true) | |
nb_fn = _get_fn(y_pred, y_true) | |
mperforms = [nb_tp, nb_fp, nb_tn, nb_fn] | |
performs = None | |
else: | |
performs = torch.zeros(chs, 4).to(device) | |
weights = _get_weights(y_true, chs) | |
for ch in range(chs): | |
y_true_ch = torch.zeros(batch_size, img_rows, img_cols) | |
y_false_ch = torch.zeros(batch_size, img_rows, img_cols) | |
y_pred_ch = torch.zeros(batch_size, img_rows, img_cols) | |
y_true_ch[y_true == ch] = 1 | |
y_false_ch[torch.logical_and((y_true != ch), (y_true != ignore_index))] = 1 | |
y_pred_ch[y_pred == ch] = 1 | |
nb_tp = _get_tp(y_pred_ch, y_true_ch) | |
nb_fp = torch.sum(y_false_ch * y_pred_ch).float() | |
nb_tn = torch.sum(y_false_ch * (1 - y_pred_ch)).float() | |
nb_fn = _get_fn(y_pred_ch, y_true_ch) | |
performs[int(ch), :] = torch.FloatTensor([nb_tp, nb_fp, nb_tn, nb_fn]) | |
mperforms = sum([i*j for (i, j) in zip(performs, weights)]) | |
return mperforms, performs | |
class OAAcc(object): | |
def __init__(self, des="Overall Accuracy"): | |
self.des = des | |
def __repr__(self): | |
return "OAcc" | |
def __call__(self, y_pred, y_true, threshold=0.5): | |
""" | |
args: | |
y_true : 4-d ndarray in [batch_size, chs, img_rows, img_cols] | |
y_pred : 4-d ndarray in [batch_size, chs, img_rows, img_cols] | |
threshold : [0.0, 1.0] | |
return (tp+tn)/total | |
""" | |
batch_size, chs, img_rows, img_cols = y_true.shape | |
device = y_true.device | |
if chs == 1: | |
y_pred = _binarize(y_pred, threshold) | |
y_true = _binarize(y_true, threshold) | |
else: | |
y_pred = _argmax(y_pred, 1) | |
y_true = _argmax(y_true, 1) | |
nb_tp_tn = torch.sum(y_true == y_pred).float() | |
mperforms = nb_tp_tn / (batch_size * img_rows * img_cols) | |
performs = None | |
return mperforms, performs | |
class Precision(object): | |
def __init__(self, des="Precision"): | |
self.des = des | |
def __repr__(self): | |
return "Prec" | |
def __call__(self, y_pred, y_true, threshold=0.5): | |
""" | |
args: | |
y_true : 4-d ndarray in [batch_size, chs, img_rows, img_cols] | |
y_pred : 4-d ndarray in [batch_size, chs, img_rows, img_cols] | |
threshold : [0.0, 1.0] | |
return tp/(tp+fp) | |
""" | |
batch_size, chs, img_rows, img_cols = y_true.shape | |
device = y_true.device | |
if chs == 1: | |
y_pred = _binarize(y_pred, threshold) | |
y_true = _binarize(y_true, threshold) | |
nb_tp = _get_tp(y_pred, y_true) | |
nb_fp = _get_fp(y_pred, y_true) | |
mperforms = nb_tp / (nb_tp + nb_fp + esp) | |
performs = None | |
else: | |
y_pred = _argmax(y_pred, 1) | |
y_true = _argmax(y_true, 1) | |
performs = torch.zeros(chs, 1).to(device) | |
weights = _get_weights(y_true, chs) | |
for ch in range(chs): | |
y_true_ch = torch.zeros(batch_size, img_rows, img_cols) | |
y_pred_ch = torch.zeros(batch_size, img_rows, img_cols) | |
y_true_ch[y_true == ch] = 1 | |
y_pred_ch[y_pred == ch] = 1 | |
nb_tp = _get_tp(y_pred_ch, y_true_ch) | |
nb_fp = _get_fp(y_pred_ch, y_true_ch) | |
performs[int(ch)] = nb_tp / (nb_tp + nb_fp + esp) | |
mperforms = sum([i*j for (i, j) in zip(performs, weights)]) | |
return mperforms, performs | |
class Recall(object): | |
def __init__(self, des="Recall"): | |
self.des = des | |
def __repr__(self): | |
return "Reca" | |
def __call__(self, y_pred, y_true, threshold=0.5): | |
""" | |
args: | |
y_true : 4-d ndarray in [batch_size, chs, img_rows, img_cols] | |
y_pred : 4-d ndarray in [batch_size, chs, img_rows, img_cols] | |
threshold : [0.0, 1.0] | |
return tp/(tp+fn) | |
""" | |
batch_size, chs, img_rows, img_cols = y_true.shape | |
device = y_true.device | |
if chs == 1: | |
y_pred = _binarize(y_pred, threshold) | |
y_true = _binarize(y_true, threshold) | |
nb_tp = _get_tp(y_pred, y_true) | |
nb_fn = _get_fn(y_pred, y_true) | |
mperforms = nb_tp / (nb_tp + nb_fn + esp) | |
performs = None | |
else: | |
y_pred = _argmax(y_pred, 1) | |
y_true = _argmax(y_true, 1) | |
performs = torch.zeros(chs, 1).to(device) | |
weights = _get_weights(y_true, chs) | |
for ch in range(chs): | |
y_true_ch = torch.zeros(batch_size, img_rows, img_cols) | |
y_pred_ch = torch.zeros(batch_size, img_rows, img_cols) | |
y_true_ch[y_true == ch] = 1 | |
y_pred_ch[y_pred == ch] = 1 | |
nb_tp = _get_tp(y_pred_ch, y_true_ch) | |
nb_fn = _get_fn(y_pred_ch, y_true_ch) | |
performs[int(ch)] = nb_tp / (nb_tp + nb_fn + esp) | |
mperforms = sum([i*j for (i, j) in zip(performs, weights)]) | |
return mperforms, performs | |
class F1Score(object): | |
def __init__(self, des="F1Score"): | |
self.des = des | |
def __repr__(self): | |
return "F1Sc" | |
def __call__(self, y_pred, y_true, threshold=0.5): | |
""" | |
args: | |
y_true : 4-d ndarray in [batch_size, chs, img_rows, img_cols] | |
y_pred : 4-d ndarray in [batch_size, chs, img_rows, img_cols] | |
threshold : [0.0, 1.0] | |
return 2*precision*recall/(precision+recall) | |
""" | |
batch_size, chs, img_rows, img_cols = y_true.shape | |
device = y_true.device | |
if chs == 1: | |
y_pred = _binarize(y_pred, threshold) | |
y_true = _binarize(y_true, threshold) | |
nb_tp = _get_tp(y_pred, y_true) | |
nb_fp = _get_fp(y_pred, y_true) | |
nb_fn = _get_fn(y_pred, y_true) | |
_precision = nb_tp / (nb_tp + nb_fp + esp) | |
_recall = nb_tp / (nb_tp + nb_fn + esp) | |
mperforms = 2 * _precision * _recall / (_precision + _recall + esp) | |
performs = None | |
else: | |
y_pred = _argmax(y_pred, 1) | |
y_true = _argmax(y_true, 1) | |
performs = torch.zeros(chs, 1).to(device) | |
weights = _get_weights(y_true, chs) | |
for ch in range(chs): | |
y_true_ch = torch.zeros(batch_size, img_rows, img_cols) | |
y_pred_ch = torch.zeros(batch_size, img_rows, img_cols) | |
y_true_ch[y_true == ch] = 1 | |
y_pred_ch[y_pred == ch] = 1 | |
nb_tp = _get_tp(y_pred_ch, y_true_ch) | |
nb_fp = _get_fp(y_pred_ch, y_true_ch) | |
nb_fn = _get_fn(y_pred_ch, y_true_ch) | |
_precision = nb_tp / (nb_tp + nb_fp + esp) | |
_recall = nb_tp / (nb_tp + nb_fn + esp) | |
performs[int(ch)] = 2 * _precision * \ | |
_recall / (_precision + _recall + esp) | |
mperforms = sum([i*j for (i, j) in zip(performs, weights)]) | |
return mperforms, performs | |
class Kappa(object): | |
def __init__(self, des="Kappa"): | |
self.des = des | |
def __repr__(self): | |
return "Kapp" | |
def __call__(self, y_pred, y_true, threshold=0.5): | |
""" | |
args: | |
y_true : 4-d ndarray in [batch_size, chs, img_rows, img_cols] | |
y_pred : 4-d ndarray in [batch_size, chs, img_rows, img_cols] | |
threshold : [0.0, 1.0] | |
return (Po-Pe)/(1-Pe) | |
""" | |
batch_size, chs, img_rows, img_cols = y_true.shape | |
device = y_true.device | |
if chs == 1: | |
y_pred = _binarize(y_pred, threshold) | |
y_true = _binarize(y_true, threshold) | |
nb_tp = _get_tp(y_pred, y_true) | |
nb_fp = _get_fp(y_pred, y_true) | |
nb_tn = _get_tn(y_pred, y_true) | |
nb_fn = _get_fn(y_pred, y_true) | |
nb_total = nb_tp + nb_fp + nb_tn + nb_fn | |
Po = (nb_tp + nb_tn) / nb_total | |
Pe = ((nb_tp + nb_fp) * (nb_tp + nb_fn) + | |
(nb_fn + nb_tn) * (nb_fp + nb_tn)) / (nb_total**2) | |
mperforms = (Po - Pe) / (1 - Pe + esp) | |
performs = None | |
else: | |
y_pred = _argmax(y_pred, 1) | |
y_true = _argmax(y_true, 1) | |
performs = torch.zeros(chs, 1).to(device) | |
weights = _get_weights(y_true, chs) | |
for ch in range(chs): | |
y_true_ch = torch.zeros(batch_size, img_rows, img_cols) | |
y_pred_ch = torch.zeros(batch_size, img_rows, img_cols) | |
y_true_ch[y_true == ch] = 1 | |
y_pred_ch[y_pred == ch] = 1 | |
nb_tp = _get_tp(y_pred_ch, y_true_ch) | |
nb_fp = _get_fp(y_pred_ch, y_true_ch) | |
nb_tn = _get_tn(y_pred_ch, y_true_ch) | |
nb_fn = _get_fn(y_pred_ch, y_true_ch) | |
nb_total = nb_tp + nb_fp + nb_tn + nb_fn | |
Po = (nb_tp + nb_tn) / nb_total | |
Pe = ((nb_tp + nb_fp) * (nb_tp + nb_fn) | |
+ (nb_fn + nb_tn) * (nb_fp + nb_tn)) / (nb_total**2) | |
performs[int(ch)] = (Po - Pe) / (1 - Pe + esp) | |
mperforms = sum([i*j for (i, j) in zip(performs, weights)]) | |
return mperforms, performs | |
class Jaccard(object): | |
def __init__(self, des="Jaccard"): | |
self.des = des | |
def __repr__(self): | |
return "Jacc" | |
def __call__(self, y_pred, y_true, threshold=0.5): | |
""" | |
args: | |
y_true : 4-d ndarray in [batch_size, chs, img_rows, img_cols] | |
y_pred : 4-d ndarray in [batch_size, chs, img_rows, img_cols] | |
threshold : [0.0, 1.0] | |
return intersection / (sum-intersection) | |
""" | |
batch_size, chs, img_rows, img_cols = y_true.shape | |
device = y_true.device | |
if chs == 1: | |
y_pred = _binarize(y_pred, threshold) | |
y_true = _binarize(y_true, threshold) | |
_intersec = torch.sum(y_true * y_pred).float() | |
_sum = torch.sum(y_true + y_pred).float() | |
mperforms = _intersec / (_sum - _intersec + esp) | |
performs = None | |
else: | |
y_pred = _argmax(y_pred, 1) | |
y_true = _argmax(y_true, 1) | |
performs = torch.zeros(chs, 1).to(device) | |
weights = _get_weights(y_true, chs) | |
for ch in range(chs): | |
y_true_ch = torch.zeros(batch_size, img_rows, img_cols) | |
y_pred_ch = torch.zeros(batch_size, img_rows, img_cols) | |
y_true_ch[y_true == ch] = 1 | |
y_pred_ch[y_pred == ch] = 1 | |
_intersec = torch.sum(y_true_ch * y_pred_ch).float() | |
_sum = torch.sum(y_true_ch + y_pred_ch).float() | |
performs[int(ch)] = _intersec / (_sum - _intersec + esp) | |
mperforms = sum([i*j for (i, j) in zip(performs, weights)]) | |
return mperforms, performs | |
class MSE(object): | |
def __init__(self, des="Mean Square Error"): | |
self.des = des | |
def __repr__(self): | |
return "MSE" | |
def __call__(self, y_pred, y_true, dim=1, threshold=None): | |
""" | |
args: | |
y_true : 4-d ndarray in [batch_size, channels, img_rows, img_cols] | |
y_pred : 4-d ndarray in [batch_size, channels, img_rows, img_cols] | |
threshold : [0.0, 1.0] | |
return mean_squared_error, smaller the better | |
""" | |
if threshold: | |
y_pred = _binarize(y_pred, threshold) | |
return torch.mean((y_pred - y_true) ** 2) | |
class PSNR(object): | |
def __init__(self, des="Peak Signal to Noise Ratio"): | |
self.des = des | |
def __repr__(self): | |
return "PSNR" | |
def __call__(self, y_pred, y_true, dim=1, threshold=None): | |
""" | |
args: | |
y_true : 4-d ndarray in [batch_size, channels, img_rows, img_cols] | |
y_pred : 4-d ndarray in [batch_size, channels, img_rows, img_cols] | |
threshold : [0.0, 1.0] | |
return PSNR, larger the better | |
""" | |
if threshold: | |
y_pred = _binarize(y_pred, threshold) | |
mse = torch.mean((y_pred - y_true) ** 2) | |
return 10 * torch.log10(1 / mse) | |
class SSIM(object): | |
''' | |
modified from https://github.com/jorge-pessoa/pytorch-msssim | |
''' | |
def __init__(self, des="structural similarity index"): | |
self.des = des | |
def __repr__(self): | |
return "SSIM" | |
def gaussian(self, w_size, sigma): | |
gauss = torch.Tensor([math.exp(-(x - w_size//2)**2/float(2*sigma**2)) for x in range(w_size)]) | |
return gauss/gauss.sum() | |
def create_window(self, w_size, channel=1): | |
_1D_window = self.gaussian(w_size, 1.5).unsqueeze(1) | |
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) | |
window = _2D_window.expand(channel, 1, w_size, w_size).contiguous() | |
return window | |
def __call__(self, y_pred, y_true, w_size=11, size_average=True, full=False): | |
""" | |
args: | |
y_true : 4-d ndarray in [batch_size, channels, img_rows, img_cols] | |
y_pred : 4-d ndarray in [batch_size, channels, img_rows, img_cols] | |
w_size : int, default 11 | |
size_average : boolean, default True | |
full : boolean, default False | |
return ssim, larger the better | |
""" | |
# Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh). | |
if torch.max(y_pred) > 128: | |
max_val = 255 | |
else: | |
max_val = 1 | |
if torch.min(y_pred) < -0.5: | |
min_val = -1 | |
else: | |
min_val = 0 | |
L = max_val - min_val | |
padd = 0 | |
(_, channel, height, width) = y_pred.size() | |
window = self.create_window(w_size, channel=channel).to(y_pred.device) | |
mu1 = F.conv2d(y_pred, window, padding=padd, groups=channel) | |
mu2 = F.conv2d(y_true, window, padding=padd, groups=channel) | |
mu1_sq = mu1.pow(2) | |
mu2_sq = mu2.pow(2) | |
mu1_mu2 = mu1 * mu2 | |
sigma1_sq = F.conv2d(y_pred * y_pred, window, padding=padd, groups=channel) - mu1_sq | |
sigma2_sq = F.conv2d(y_true * y_true, window, padding=padd, groups=channel) - mu2_sq | |
sigma12 = F.conv2d(y_pred * y_true, window, padding=padd, groups=channel) - mu1_mu2 | |
C1 = (0.01 * L) ** 2 | |
C2 = (0.03 * L) ** 2 | |
v1 = 2.0 * sigma12 + C2 | |
v2 = sigma1_sq + sigma2_sq + C2 | |
cs = torch.mean(v1 / v2) # contrast sensitivity | |
ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2) | |
if size_average: | |
ret = ssim_map.mean() | |
else: | |
ret = ssim_map.mean(1).mean(1).mean(1) | |
if full: | |
return ret, cs | |
return ret | |
class AE(object): | |
""" | |
Modified from matlab : colorangle.m, MATLAB V2019b | |
angle = acos(RGB1' * RGB2 / (norm(RGB1) * norm(RGB2))); | |
angle = 180 / pi * angle; | |
""" | |
def __init__(self, des='average Angular Error'): | |
self.des = des | |
def __repr__(self): | |
return "AE" | |
def __call__(self, y_pred, y_true): | |
""" | |
args: | |
y_true : 4-d ndarray in [batch_size, channels, img_rows, img_cols] | |
y_pred : 4-d ndarray in [batch_size, channels, img_rows, img_cols] | |
return average AE, smaller the better | |
""" | |
dotP = torch.sum(y_pred * y_true, dim=1) | |
Norm_pred = torch.sqrt(torch.sum(y_pred * y_pred, dim=1)) | |
Norm_true = torch.sqrt(torch.sum(y_true * y_true, dim=1)) | |
ae = 180 / math.pi * torch.acos(dotP / (Norm_pred * Norm_true + eps)) | |
return ae.mean(1).mean(1) | |
if __name__ == "__main__": | |
for ch in [3, 1]: | |
batch_size, img_row, img_col = 1, 224, 224 | |
y_true = torch.rand(batch_size, ch, img_row, img_col) | |
noise = torch.zeros(y_true.size()).data.normal_(0, std=0.1) | |
y_pred = y_true + noise | |
for cuda in [False, True]: | |
if cuda: | |
y_pred = y_pred.cuda() | |
y_true = y_true.cuda() | |
print('#'*20, 'Cuda : {} ; size : {}'.format(cuda, y_true.size())) | |
########### similarity metrics | |
metric = MSE() | |
acc = metric(y_pred, y_true).item() | |
print("{} ==> {}".format(repr(metric), acc)) | |
metric = PSNR() | |
acc = metric(y_pred, y_true).item() | |
print("{} ==> {}".format(repr(metric), acc)) | |
metric = SSIM() | |
acc = metric(y_pred, y_true).item() | |
print("{} ==> {}".format(repr(metric), acc)) | |
metric = LPIPS(cuda) | |
acc = metric(y_pred, y_true).item() | |
print("{} ==> {}".format(repr(metric), acc)) | |
metric = AE() | |
acc = metric(y_pred, y_true).item() | |
print("{} ==> {}".format(repr(metric), acc)) | |
########### accuracy metrics | |
metric = OAAcc() | |
maccu, accu = metric(y_pred, y_true) | |
print('mAccu:', maccu, 'Accu', accu) | |
metric = Precision() | |
mprec, prec = metric(y_pred, y_true) | |
print('mPrec:', mprec, 'Prec', prec) | |
metric = Recall() | |
mreca, reca = metric(y_pred, y_true) | |
print('mReca:', mreca, 'Reca', reca) | |
metric = F1Score() | |
mf1sc, f1sc = metric(y_pred, y_true) | |
print('mF1sc:', mf1sc, 'F1sc', f1sc) | |
metric = Kappa() | |
mkapp, kapp = metric(y_pred, y_true) | |
print('mKapp:', mkapp, 'Kapp', kapp) | |
metric = Jaccard() | |
mjacc, jacc = metric(y_pred, y_true) | |
print('mJacc:', mjacc, 'Jacc', jacc) | |