applied-ai-018's picture
Add files using upload-large-folder tool
0cd5102 verified
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
import pytest
import os
import re
import subprocess
@pytest.fixture(params=[1])
def moe_num_experts(request):
return str(request.param)
@pytest.fixture(params=[1])
def mp_size(request):
return str(request.param)
@pytest.fixture
def params(moe_num_experts, mp_size):
base_dir = os.getenv("MEGATRON_CKPT_DIR")
assert base_dir, "Please set MEGATRON_CKPT_DIR in your environment"
vocab_file = os.path.join(base_dir, "gpt2-vocab.json")
merge_file = os.path.join(base_dir, "gpt2-merges.txt")
ckpt_path = os.path.join(base_dir, "checkpoints/gpt2_345m")
return [
"--micro-batch-size", "1",
"--num-layers", "24",
"--hidden-size", "1024",
"--num-attention-heads", "16",
"--max-position-embeddings", "1024",
"--vocab-file", vocab_file,
"--merge-file", merge_file,
"--load", ckpt_path,
"--seq-length", "1024",
"--out-seq-length", "1024",
"--tensor-model-parallel-size", mp_size,
"--tokenizer-type", "GPT2BPETokenizer",
"--num-experts", moe_num_experts,
"--mlp-type", "standard",
"--num-samples", "0",
"--bf16",
]
def test_moe_megatron(params, mp_size):
output_re = r"===START OUTPUT===([\S\s]*)===END OUTPUT==="
# Run the baseline
baseline_cmd = ["deepspeed", "--num_gpus", mp_size, "./run_megatron.py"] + params
result = subprocess.run(baseline_cmd, stdout=subprocess.PIPE)
baseline_output = re.search(output_re, result.stdout.decode("utf-8")).group(1)
# Run with DeepSpeed
deepspeed_cmd = baseline_cmd + ["--ds-inference"]
result = subprocess.run(deepspeed_cmd, stdout=subprocess.PIPE)
deepspeed_output = re.search(output_re, result.stdout.decode("utf-8")).group(1)
assert (
baseline_output == deepspeed_output
), f"outputs do not match: {baseline_output}\n{deepspeed_output}"