peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/tests
/test_megatron.py
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company. | |
import pytest | |
import os | |
import re | |
import subprocess | |
def moe_num_experts(request): | |
return str(request.param) | |
def mp_size(request): | |
return str(request.param) | |
def params(moe_num_experts, mp_size): | |
base_dir = os.getenv("MEGATRON_CKPT_DIR") | |
assert base_dir, "Please set MEGATRON_CKPT_DIR in your environment" | |
vocab_file = os.path.join(base_dir, "gpt2-vocab.json") | |
merge_file = os.path.join(base_dir, "gpt2-merges.txt") | |
ckpt_path = os.path.join(base_dir, "checkpoints/gpt2_345m") | |
return [ | |
"--micro-batch-size", "1", | |
"--num-layers", "24", | |
"--hidden-size", "1024", | |
"--num-attention-heads", "16", | |
"--max-position-embeddings", "1024", | |
"--vocab-file", vocab_file, | |
"--merge-file", merge_file, | |
"--load", ckpt_path, | |
"--seq-length", "1024", | |
"--out-seq-length", "1024", | |
"--tensor-model-parallel-size", mp_size, | |
"--tokenizer-type", "GPT2BPETokenizer", | |
"--num-experts", moe_num_experts, | |
"--mlp-type", "standard", | |
"--num-samples", "0", | |
"--bf16", | |
] | |
def test_moe_megatron(params, mp_size): | |
output_re = r"===START OUTPUT===([\S\s]*)===END OUTPUT===" | |
# Run the baseline | |
baseline_cmd = ["deepspeed", "--num_gpus", mp_size, "./run_megatron.py"] + params | |
result = subprocess.run(baseline_cmd, stdout=subprocess.PIPE) | |
baseline_output = re.search(output_re, result.stdout.decode("utf-8")).group(1) | |
# Run with DeepSpeed | |
deepspeed_cmd = baseline_cmd + ["--ds-inference"] | |
result = subprocess.run(deepspeed_cmd, stdout=subprocess.PIPE) | |
deepspeed_output = re.search(output_re, result.stdout.decode("utf-8")).group(1) | |
assert ( | |
baseline_output == deepspeed_output | |
), f"outputs do not match: {baseline_output}\n{deepspeed_output}" | |