peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/tools
/bert_embedding
/huggingface.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | |
import numpy as np | |
import torch | |
from tqdm import tqdm | |
from .external_libs import transformers | |
class IterableTextDataset(torch.utils.data.IterableDataset): | |
'''Iterable over a text dataset.''' | |
def __init__(self, text_dataset): | |
self.text_dataset = text_dataset | |
def __iter__(self): | |
'''Remove 'endoftext' string.''' | |
for sample_idx in range(len(self.text_dataset)): | |
sample = self.text_dataset[sample_idx] | |
text = sample["text"].replace("<|endoftext|>", "") | |
yield text | |
class MyFeatureExtractionPipeline(transformers.FeatureExtractionPipeline): | |
def _forward(self, model_inputs): | |
# Embed inputs. | |
model_outputs = self.model(**model_inputs) | |
# Attention mask. | |
embeddings = model_outputs[0] | |
masks = torch.sum(model_inputs['attention_mask'], dim=1) | |
# Collect embeddings & check for nan. | |
outputs = [] | |
for embedding, mask in zip(embeddings, masks): | |
output = torch.mean(embedding[1: mask - 1], dim=0) | |
# Nans due to empty input sequences; so only check first element. | |
if torch.isnan(output.view(-1)[0]).any(): | |
output.zero_() | |
outputs.append(output) | |
# Sample. | |
data = { | |
"input" : model_inputs["input_ids"], | |
"output" : outputs, | |
} | |
return data | |
def postprocess(self, model_outputs): | |
# Return input for analysis. | |
return { | |
"input" : model_outputs["input"].numpy(), | |
"output" : model_outputs["output"].numpy(), | |
} | |
class HuggingfaceEmbedder: | |
def __init__(self, batch_size, max_seq_length): | |
# Model, tokenizer. | |
self.model = transformers.BertModel.from_pretrained("bert-large-cased") | |
self.tokenizer = transformers.AutoTokenizer.from_pretrained( | |
"bert-large-cased", model_max_length=max_seq_length) | |
# Feature extraction pipeline. | |
self.pipe = MyFeatureExtractionPipeline( | |
model=self.model, | |
tokenizer=self.tokenizer, | |
device=torch.cuda.current_device(), | |
truncation=True, | |
max_length=max_seq_length, | |
) | |
self.batch_size = batch_size | |
def embed_text_dataset(self, text_dataset, verbose=True): | |
# Wrap dataset in iterable. | |
dataset = IterableTextDataset(text_dataset) | |
# Allocate output array. | |
n_samples = len(text_dataset) | |
embeddings = np.zeros((n_samples, 1024), dtype="f4") | |
start_idx = 0 | |
# Wrap iterator in tqdm for verbose output. | |
_iter = self.pipe(dataset, batch_size=self.batch_size) | |
if verbose: | |
_iter = tqdm(_iter, "hf embed", total=n_samples) | |
# Embed dataset. | |
for idx, out_dict in enumerate(_iter): | |
inp = out_dict["input"] | |
out = out_dict["output"] | |
embeddings[start_idx] = out | |
start_idx += 1 | |
return embeddings | |
def embed_text(self, text): | |
'''Embed a single text string. | |
Primarily used for on-the-fly embeddings, particularly during | |
analysis or debugging. For large scale, use 'embed_text_dataset()'. | |
''' | |
class SingleTextDataset(torch.utils.data.Dataset): | |
'''Dataset that holds single string.''' | |
def __init__(self, text): | |
assert isinstance(text, str) | |
self.text = text | |
def __len__(self): | |
return 1 | |
def __getitem__(self, i): | |
return {"text": self.text} | |
# Embed text. | |
text_ds = SingleTextDataset(text) | |
embed = self.embed_text_dataset(text_ds, verbose=False)[0] | |
return embed | |